R TR
Introduction to Traffic Engineering
15T iR AR

Bz

FURZIERY: RIRT SRR LIENTRAN
FIRZOERY: Rl TIER

LEETFIRA T TR Martin Savelsbergh BURUF S, NBZCAEEM, H 2%,

PRRERY: B 15 1 1/119

Q ®n
@ EAAED (1) —RIAER
o HTHA
o i NFIX
Q BAESE () ik
Q A THRAE SN
Q@ EAAELENEE
o i NFILRUHE
@ 2-change Joi & A ENIAIEE
o NHI: T4 [RIEHAYTK
Q (LtH) WmExk
o GRASP
@ Advanced Neighborhood Search
@ Tabu search

@ Large-Scale Neighborhood Search
o VRP A

it
-
it

«O>» «Fr «Z» « DA o119
o omemERE EEmwsw 2119

BRA T R][]

@ In the TSP the objective is to find the shortest tour through a set of cities,
visiting each city exactly once and returning to the starting city.

@ Type of decisions:

e routing

PRRERY: B 15 1 3 /119

Figure

PRRERY: B 15 1 4 /119

Vehicle Routing Problem

@ In the VRP a number of vehicles located at a central depot has to serve a set
of geographically dispersed customers. Each vehicle has a given capacity and
each customer has a given demand. The objective is to minimize the total
distance traveled.

@ Type of decisions

e assigning
e routing

PRRERY: B 15 1 5 /119

Vehicle Routing Problem

Figure

PRRERY: B 15 1 6 /119

5 TSP k&

o TSP AJMN VRP Hy—HRs, Bfi%E, JoA RS F KRR,
o [KlItt, FITKME TSP B A AMMZI M (BB AT T3KE VRP
o ME—T: ZHEIMTRM TSP K757 (BIAMEARR), WfHT VRP

PRRERY: B 15 1 7 /119

Vehicle Routing Problem with Time Windows

@ In the VRPTW a number of vehicles is located at a central depot and has to
serve a set of geographically dispersed customers. Each vehicle has a given
capacity. Each customer has a given demand and has to be served within a
given time window.

@ Type of decisions

e assigning
e routing
e scheduling

PRRERY: B 15 1 8 /119

VRPTW

PRRERY: B 15 1 9 /119

Pickup and Delivery Problem with Time Windows

@ In the PDPTW a number of vehicles has to serve a number of transportation
requests. Each vehicle has a given capacity. Each transportation request
specifies the size of the load to be transported, the location where it is to be
picked up plus a pickup time window, and the location where it is to be
delivered plus a delivery time window.

@ Type of decisions

e assigning
e routing
e scheduling

PRRERY: B 15 1 10 / 119

PDPTW

A Pickup A
@ Delivery } -7
S A A
- \\
o/ \ S
// \ S
N
// \\ /A .
\ -
‘\ / a N
N . //<
N - \
\\ /// \\.
N _
\\ ./
(]

PRRERY: B 15 1 11 /119

PDPTW

A Pickup
@ Delivery

PRRERY: B 15 1 12 /119

B VA ()

o fELEFR

e minimize vehicles

minimize miles

minimize labor

satisfy service requirements
maximize orders

maximize volume delivered per mile

PRRERY: B 15 1 13 /119

B VA ()

o fELEFR

e minimize vehicles

minimize miles

minimize labor

satisfy service requirements
maximize orders

maximize volume delivered per mile

PRRERY: B 15 1 14 /119

B VA ()

o MIHIE
e Single vs. multiple depots
o Vehicle capacity: homogenous vs. heterogeneous; volume vs. weight
o Driver availability: fixed vs. variable start times
o Delivery windows: hard vs. soft; single vs. multiple; periodic schedules
e Service requirements: Maximum ride time; Maximum wait time
e Fixed and variable delivery times
o Fixed vs. variable regions/route

PRRERY: B 15 1 15 / 119

HTHY AR

@ Dynamic routing and scheduling problems
e More and more important due to availability of GPS and wireless
communication
e Information available to design a set of routes and schedules is revealed
dynamically to the decision maker: Order information (e.g., pickups), Vehicle
status information (e.g., delays), Exception handling (e.g., vehicle breakdown)
@ Stochastic routing and scheduling problems

o Size of demand
o Travel times

PRRERY: B 15 1 16 / 119

Q HN
@ ERAE L (1) R4
o TRHHIL
o IARE
@ ERAFE (1) —EHsoH
Q A THRAE SN
© HARAENHNE
o i NFILRUHE
@ 2-change o & A HENIAIHE
o NHI: T4 IRIEHAY KM
Q (8 #WEE
o GRASP
@ Advanced Neighborhood Search
@ Tabu search
@ Large-Scale Neighborhood Search
o VRP A

«O0>» «Fr «=)r» «)

DA 477119
CommsmERE EEmwsw 17119

AT H R

Q i

@ FRRIE () AL
o i YLk

© EaARE () —fErkit
Q ETHRAEENEEIER
© EAARIENE

Q (&) ik

PRRERY: B 15 1

18 / 119

Initial Intermediate

WAEBEHN s(i,j) = c(0,i) + <(0,)) — c(i,j)

PRRERY: B 15 1

Final

19 / 119

Clarke-Wright &%

@ Make n routes: vg — v; — v, for each i > 1;

@ Compute the savings for merging delivery locations 7 and j for all /,j > 1 and
i # J;

@ Sort the savings in descending order; Create out-and-back routes for all
customers.

o

Starting at the top of the (remaining) list of savings, merge the two routes
associated with the largest (remaining) savings, provided that:
e The two delivery locations are not already on the same route;
o Neither delivery location is interior to its route, meaning that both nodes are
still directly connected to the depot on their respective routes;
e The demand G and distance constraints D are not violated by the merged
route.

@ Repeat step 3 until no additional savings can be achieved.

PRRERY: B 15 1 20 /119

1 5 RS

o TAETHN s(i,j) = (0, i) + <(0,)) — Ac(i,))
@ The larger A, the more emphasis is placed on the distance between customers
being connected

PRRERY: B 15 1 21 /119

AT H 3¢

Q &N

Q FEAFE () —RIAR
o AR

© EaARE () —fErkit

Q ETHRAEENEEIER

© EAARIENE

Q (&) ik

PRRERY: B 15 1

22 /119

PRRERY: B

Initial

Intermediate

Figure

15 1

Final

23 /119

5
D

@ Start with a set of unrouted stops;
@ Select an unrouted stop; Insert selected stop in current set of routes;

© Repeat step 2 until no unrouted stop is available.

KB TSP AN, AEId AR E IR AR A BOEA, B,
RN, REFHA

PRRERY: B 15 1 24 /119

Nearest addition

@ Selection: If partial tour T does not include all cities, find cities k and j, j on
the tour and k not, for which ¢(j, k) is minimized.

o Insertion: Let {i, j} be either one of the two edges involving jin T, and
replace it by {i, k} and {k,j} to obtain a new tour including k.

PRRERY: B 15 1 25 /119

Nearest Insertion

@ Selection: If partial tour T does not include all cities, find cities k and j, j on
the tour and k not, for which ¢(j, k) is minimized.

o Insertion: Let {/,j} be the edge of T which minimizes c(i, k) + c(k, j) — c(i, }),
and replace it by {i, k} and {k, j} to obtain a new tour including k.

PRRERY: B 15 1 26 / 119

Farthest Insertion

@ Selection: If partial tour T does not include all cities, find cities k and j, j on
the tour and k not, for which c(j, k) is maximized.

o Insertion: Let {/,j} be the edge of T which minimizes c(i, k) + c(k, j) — c(i, }),
and replace it by {i, k} and {k, j} to obtain a new tour including k.

PRRERY: B 15 1 27 /119

Cheapest Insertion

@ Selection: If partial tour T does not include all cities, find for each k not on
T the edge {/,j} of T which minimizes c(T, k) = c(i, k) + c(k,j) — c(i,).
Select city k for which ¢(T, k) is minimized. (Select the nearest k to any
edge in T)

@ Insertion: Let {/,j} be the edge of T for which ¢(T, k) is minimized, and
replace it by {/, k} and {k,j} to obtain a new tour including k.

PRRERY: B 15 1 28 /119

BB LR

Nearest addition: 2

Nearest insertion: 2

Cheapest insertion: 2

Farthest insertion: >2.43 (Euclidean); >6.5 (Triangle inequality)

PRRERY: B 15 1 29 /119

KA RS

@ Priority Queue
o insert(value, key)
o getTop(value, key)
o setTop(value, key)
@ k-d Tree
o deletePt(point)
o nearest(point)

PRRERY: B 15 1 30 /119

5
Drt

Tree->deletePt(StartPt)
NNOut[StartPt] := Tree->nearest(StartPt)
PQ->insert(Dist(StartPt, NNOut(StartPt)), StartPt)
loop n-1 time
loop
PQ->getTop(ThisDist, x)
y := NNOut[x]
If y not in tour, then break
NNOut[x] = Tree->nearest(x)
PQ->setTop(Dist(x, NNOut[x]), x)
Add point y to tour; x is nearest neighbor in tour
Tree->deletePt(y)
NNOut[y] = Tree->nearest(y)
PQ->insert(Dist(y, NNOut[y]), y)

Figure

PRRERY: B 15 1

@ Start with a feasible solution
x; Define neighborhood N(x).
@ Is there an improving
neighbor y in N(x) but not in
the tour?
o No. x is locally optimal
o Otherwise. Add y to tour
and start search from y

31/ 119

Q HN
@ EAAED (1) —RIAER
o AL
o i NFIX
Q ERAME (1) MG
Q A THRAE SN
Q@ EAAELENEE
o i NFILRUHE
@ 2-change Joi & A ENIAIEE
o NHI: T4 [RIEHAYTK
Q (8 #WEE
o GRASP
@ Advanced Neighborhood Search
@ Tabu search
@ Large-Scale Neighborhood Search
o VRP A

«O0>» «Fr «=)r» «)

DA 33119
 mmmkr ®E omwsw 2110

2-change (2-opt)

Take 2 arcs from the tour, reconnect these arcs with each other and calculate new
travel distance. If this modification has led to reduction in total travel distance,
the current route is updated. Repeat the steps until no more improvements are
found or the maximum number of iterations is reached

0(n2) possibilities
Figure

PRRERY: B 15 1 33 /119

3-change (3-opt)

Similar as the 2-opt except that 3 arcs are taken in each iteration.

0(n3) possibilities
Figure

PRRERY: B 15 1 34 /119

1-relocate

Take one point out and reinsert it in the tour.

0(n2) possibilities
Figure

PRRERY: B 15 1 35 /119

2-relocate

Take two points out and reinsert them in the tour.

0(n?2) possibilities

Figure

PRRERY: B 15 1 36 / 119

swap

Swap the sequences of two points.

0(n2) possibilities

Figure

PRRERY: B 15 1

37 /119

GENI

Select 3 points as the initial subset of tour, and insert the remaining points while
conducting 3-opt or k-opt

@2

Figure

PRRERY: B 15 1 38 /119

Vehicle Routing and Scheduling

Figure

PRRERY: B 15 1 39 /119

Vehicle Routing and Scheduling

Figure

PRRERY: B 15 1 40 / 119

Q HN
Q ERAFZE () AR
o HTHA
o AR
@ ERAFE (1) —EHsoH
Q ETHEE SR B
Q@ EAAELENEE
o i NFILRUHE
@ 2-change o & A HENIAIHE
o NHI: T4 IRIEHAY KM
Q (LtH) WmExk
o GRASP
@ Advanced Neighborhood Search
@ Tabu search

@ Large-Scale Neighborhood Search
o VRP A

«O0>» «Fr «=)r» «) 0@041/119
 mmmeEAE B& 0 mwswo o/ 110

T REESIER

@ Assignment decisions are often the most important
@ Assignment decisions are often the most difficult

PRRERY: B 15 1 42 /119

Figure

PRRERY: B 15 1 43 /119

Figure

PRRERY: B 15 1 44 /119

PRRERY: B

o ©°
[
@
()
® [
® ®
® ®
@
Figure
15 1 45 /119

Figure

PRRERY: B 15 1 46 /119

Figure

PRRERY: B 15 1 47 /119

Figure

PRRERY: B 15 1 48 /119

min Z CkYk (1)

keK
s.t.

devyk =1 VveV
keK

Yk € {07 1}

PRRERY: B 15 1 49 /119

it

@ Advantage: very flexible

e heuristics for route generation — column generation
e complicating constraints in route generation

@ Disadvantage
o small to medium size instances

PRRERY: B 15 1

50 / 119

Q oA BIENHE
o MANFIERHE
e 2-change Joi & A ENIAYHE
o NWH: FTZERIFAKAE

PRRERY: B 15 1

51 /119

AT H R
Q i

Q FEAFE () —RIAR

© EaARE () —fErkit
Q ETHRAEENEEIER

© EAARIENE
o MARIRHIEE

Q (&) ik

PRRERY: B 15 1

52 /119

PRRERY: B

Initial

Intermediate

Figure

15 1

Final

53 /119

L

Efficient (fast)
Effective (good quality solutions)
Easy to implement

Easy to extend

time windows

route duration

variable delivery quantities

PRRERY: B 15 1 54 /119

Algorithm 1: Insertion Heuristics

1 N ={unassigned customers}
2 R ={set of routes}
3 while N # ¢J do

4 p* = —wo

5 for je N do

6 for re Rand (i—1,i) € Rdo

7 if Feasible(i,j) and Profit(i, j)> p* then
8 re = r,ix = i jx = j, px = Profit(i, j)
9 end

0 end

1 end

2 Insert(*, *)

3 Update(r*)

4 | N=M{*}

5 end

PRRERY: B 15 1 55 / 119

o Complexity is O(n®) if Feasible(*), Profit(*), Update(*) are at most O(n?)
o For VRP: Feasible(*): d; < Q—qr; g- = g, + d,

PRRERY: B 15 1 56 / 119

Hsf [F]

Arrival time

L\ .

may increase
Figure

FERRERY: Wiz 515

How to quickly check
feasibility?

57 / 119

B R EC A I R

depot | l

Latest time delivery can take place

PRRERY: B 15 1 58 / 119

s TR & B AT AT 1

o Notation: [Ek, Lk] time window on start of delivery at k

@ Auxiliary information: ey earliest time delivery can take place at k; /; latest
time delivery can take place at k

o Feasible()
° dj < Q —qr
o g = max{Ej, e—1+ t,',].,j}&/j = min{LJ-, I — tj’,'}
o < IJ

e Update()

o for k=1i—1to 0: Ik = min{lk, lkt+1 — tiks+1}
o fork=iton e = max{ek, €k—1 — tk—l,k}

PRRERY: B 15 1 59 /119

SRR RIATE

@ Notation: T planning horizon, L route duration limit

@ Auxiliary information: eg earliest start time route eg = max{0, e,+1 — L}; lht1
latest completion time route /11 = min{lp + L, T}; f; total travel time from i
until the end ; b; total travel time from the beginning until 7

o Feasible()

o enr1 = max{eni1, 6+ tj; + fi}, & = max{eo, €n11 — L}
o I = min{lo, IJ — ti—1,j— b,‘_l}, /n+1 = min{ln+1, I + L}
o di<Q—gqr
o < /J
0 e <l & lht1 > eny1
e Update()
o fork=i—1to0: lx = min{/k, lk+1 — tk,k+1}
o for k=ito n e = max{ex, ex—1 — tk—1,k}
o if e updated: for k =0 to n— 1: ex = max{ek, €—1 — tk—1,k}
o if 41 updated: for k=n+1to 0: l = min{lx, lkt1 — tirt+1}

PRRERY: B 15 1 60 / 119

AT H R
Q i

Q FEAFE () —RIAR

© EaARE () —fErkit
Q ETHRAEENEEIER
© EAARIENE

e 2-change Joi & T ENI I E

Q (&) ik

PRRERY: B 15 1

61 /119

2-change [B]Ji

Figure

IR RHTIE, B0 AR A] E 222 B)

PRRERY: B 15 1 62 /119

Lexicographic search (FH1IER)

2-changes

Figure

PRRERY: B 15 1 63 / 119

1
o
o
i

U, Uy v, V|

Let U= {u,un,...,u}, V={wvi,v,...,v}

o Total travel time T(U) = Z;:ll t(uj, Uiy1)

o Earliest delivery time of the last node E(uyx) assuming uy is left at the
opening of its time window max,cy{E; + T(uj, ..., ux)}

o Latest delivery time L(uy) such that the path remains feasible
mingey{Li — T(u1,...,u;)}

PRRERY: B 15 1 64 / 119

T(UUV) = T(U) + t(uk, v1) + T(V)
o E(v)) = max{E(ug) + t(ug, v1) + T(V), E(v))}

o L(u) = min{L(u),L(v1) — T(V) — t(uk, 1)}

PRRERY: B 15 1 65 / 119

U, Uy v, V|

o Earliest delivery at vy @ E(ug) + t(uk, v1)
o Earliest delivery at v;: E(uk) + t(uk, vi) + T(V)

PRRERY: B 15 1 66 / 119

U, Uy v, V|

o Latest delivery at wy : L(vy) — t(ug, v1)
o Latest delivery at uy : L(vy) — t(ug, v1) — T(U)

PRRERY: B 15 1 67 / 119

@ The set of global variables makes it possible to test feasibility of an exchange
in constant time

@ The lexicographic search strategy makes it possible to maintain the correct
values for the set of global variables in constant time

PRRERY: B 15 1 68 / 119

AT H R
Q i

Q FEAFE () —RIAR

© EaARE () —fErkit
Q ETHRAEENEEIER
© EAARIENE

o NI AT IR IR
Q (&) ik

PRRERY: B 15 1

69 / 119

Dial-a-Ride Problem

e Dispatch vehicles to pickup person/package at one location (origin) and
deliver the person/package at another location (destination)
@ Service related constraints
o pickup window / delivery window
e maximum wait time: Limit waiting time at a stop before departing
e maximum ride time: Limit time between pickup and delivery

PRRERY: B 15 1 70 / 119

Feasibility testing

Given a sequence of pickups and deliveries does there exist a feasible schedule
satisfying pickup and delivery windows, maximum wait time, and maximum ride
time constraints?

PRRERY: B 15 1 71/ 119

Example

e Waiting time limit: 10
@ Ride time limit: 1.5 x ride time

PRRERY: B 15 1 72 /119

Example

PHRZIE R

i

Stop Early Late Arrival Departure ~ Waiting Travel
1+ 10.15 103 10.15 10.15 0 20
2+ 10.45 11 10.35 10.45 10 15

1- 11 11.15 11 11 0 10

2- 11.2 11.4 11.1 11.2 10 15
3+ 11.4 12 11.35 11.4 5 50

3- 12.3 13 12.3 12.3 0

15 1

73 /119

Example (cont.)

1+

Stop Early Late Arrival Departure ~ Waiting Travel

1+ 10.15 103 10.15 10.15 0 20
2+ 1045 11 10.35 10.45 10 15
1- 11 11.15 11 11 0 10
2- 11.2 11.4 111 11.2 10 15
3+ 11.4 12 11.35 11.4 5 50
4+ 121 12.3 115 12.1 20 40
3- 12.3 13 125 125 0 20
4- 13 1345 131 13.1 0

PRRERY: B 15 1 74 /119

Example (cont.)

PHRZIE R

i

Stop Early Late Arrival Departure ~ Waiting Travel
1+ 10.15 10.3 10.15 10.15 0 20
24 10.45 11 10.35 10.45 10 15

1- 11 11.15 11 11 0 10

2- 11.2 11.4 11.1 11.2 10 15
3+ 11.4 12 11.35 11.4 5 50
44 12.1 12.3 11.5 12.1 20 40

3- 12.3 13 125 125 0 20

4- 13 1345 131 13.1 0

Stop Early Late Arrival Departure ~ Waiting Travel
1+ 10.15 10.3 10.2 10.2 0 20
24 10.45 11 10.4 10.5 10 15

1- 11 11.15 11.05 11.05 0 10

2- 11.2 11.4 11.15 11.25 10 15
34+ 11.4 12 11.4 11.5 10 10
44 12.1 12.3 12 12.1 10 40

3- 12.3 13 12.5 12.5 0 20

4- 13 1345 131 13.1 0

15 1

75 / 119

Feasibility testing

@ Can be done in linear time ...

@ Invariant property: No feasible schedule can have an arrival or departure time
earlier than the computed arrival and departure times

o Notation:

—

e, ;] time window

waiting time limit

ride time limit

arrival time

departure time

latest feasible departure time

iy i

*’-\\D'\)? S_ €

PRRERY: B 15 1 76 / 119

Phase |-Forward

Account for pickup and delivery windows and maximum waiting time
constraints

Normal updates:
Ai=Dia+tiay; Dj=max{e, Al Lj=min{lj, L1+ tj1j+w}
Infeasibility: A; > I;; Lj<e¢

Special update when Aj+w < e Aj= ¢ —w; D; = ¢

PRRERY: B 15 1 77 /119

Phase II-Backward

@ Update arrival and departure times and "check” ride time constraints:
Waiting time from j until the end of route W

@ Normal updates:
Dj = Aj+1 — tj—l,j; Aj = max{ i, UVj — } W= W+ (D — A)
e Infeasibility: A = (D;. —D;,) — D, +A> L A>W

@ Special update when A > W
Dj = DJ + A; AJ = max{Aj, DJ — w}; W=w-A

I+I ' i

PRRERY: B 15 1 78 / 119

Phase Ill-Forward

o Finalize arrival and departure times and check ride time constraints
o Normal updates: A; = Dj_1 + ti_1j; D;j = max{A;, D;}

@ Infeasibility (drop-off point j = i_):
A= (DL — D/+) —ati i, Di >L; ;A>0

PRRERY: B 15 1 79 / 119

N5 GV XA AT

(] People transportation

delivery window [0, /;]

no pickup window

waiting time at pickup only

different ride time limits

consecutive stops at same location (waiting time per location rather than stop)

@ Package transportation: no waiting time limits

PRRERY: B 15 1 80 / 119

Q (8 WEE
o GRASP
@ Advanced Neighborhood Search
@ Tabu search
@ Large-Scale Neighborhood Search
e VRP A

PRRERY: B 15 1 81/ 119

AT H R
Q i

Q FEAFE () —RIAR

© EaARE () —fErkit
Q ETHRAEENEEIER
© EAARIENE

O (8 HisEk
o GRASP

PRRERY: B 15 1

82 /119

Greedy Randomized Adaptive Search Procedure (GRASP)

@ Construction 4+ Improvement

o Greedily create feasible set of routes; Improve feasible set of routes

PRRERY: B 15 1 83 /119

K 2RI R

@ independent neighborhood searches

@ starting solutions obtained from a previous local optimum by a suitable
perturbation method

Algorithm 2: GRASP-1

Initialization: best = oo
while stop criterion not reached do
Randomly create feasible set of routes
Improve feasible set of routes (local search)
if Better than best then
| Update best
end
end

PRRERY: B 15 1 84 /119

K 2RI R

@ independent neighborhood searches

@ random starting solutions

Algorithm 3: Grasp-2

1 Initialization: best = o0

2 Greedily create feasible set of routes

3 while stop criterion not reached do

4 Perturb feasible set of routes

5 Improve feasible set of routes (local search)
6 if Better than best then

7 | Update best

8 end

9 end

PRRERY: B 15 1 85 /119

Greedy algorithm

@ Constructs a solution one element at a time:

Define candidate elements

Apply greedy function to each candidate element

Rank candidate elements according to greedy function value
Add best ranked element to solution

PRRERY: B 15 1 86 / 119

Semi-greedy algorithm

@ Constructs a solution one element at a time:

Define candidate elements

Apply greedy function to each candidate element

Rank candidate elements according to greedy function value

Place well-ranked elements in a restricted candidate list (RCL)

Select an element from the RCL at random and add it to the solution

PRRERY: B 15 1 87 / 119

Restricted Candidate List

o Cardinality based:
o Place k best candidates in RCL
@ Value based I:

o Place all candidates having greedy value better than ax max value in RCL
(with0 < a<1)

@ Value based II:

o Place all candidates having greedy value better than min value + ax (max
value - min value) in RCL (with 0 < a < 1)

PRRERY: B 15 1 88 / 119

Semi-greedy

Algorithm 4: Grasp-2

Initialization: best = o
while stop criterion not reached do
Semi-greedily create feasible set of routes
if Better than best then
| Update best
end
end

PRRERY: B 15 1

89 / 119

Greedy Randomized Adaptive Search Procedure

Algorithm 5: Grasp-2

Initialization: best = o
while stop criterion not reached do
Semi-greedily create feasible set of routes
Improve feasible set of routes
if Better than best then
‘ Update best
end
end

PRRERY: B 15 1

90 / 119

GRASP

@ GRASP tries to capture good features of greedy & random constructions
o lteratively

e samples solution space using a greedy probabilistic bias to construct a feasible
solution
o applies local search to attempt to improve upon the constructed solution

PRRERY: B 15 1 91 /119

AT H R
Q i

Q FEAFE () —RIAR

© EaARE () —fErkit
Q ETHRAEENEEIER
© EAARIENE

Q (&) ik

@ Advanced Neighborhood Search

PRRERY: B 15 1

92 /119

Neighborhood search - observations

@ Weakness:

o looks only one step ahead, and may get trapped in a bad local optimum
@ Strength:

o Fast and easy to implement

PRRERY: B 15 1 93 /119

Neighborhood search - sophisticated enhancements

@ Goal: much:

o Increase quality of solution
e Do not increase time to find solution too

@ Tabu Search
o Large Scale Neighborhood Search

PRRERY: B 15 1 94 /119

A H 5%

Q fin

Q@ FRRIE () ML
Q R () i

Q ETHRAEENEEIER
© EAARIENE

Q (&) ik

@ Tabu search

PRRERY: B 15 1

95 / 119

Tabu search

Local minimum I
Global minimum t

Figure

@ Strategy to escape from a local optimum and continue the search

@ Implementation
o Best move is always performed
e Avoid cycling using short-term memory
o Attributes of recent solutions stored in tabu list
o Moves involving attributes in tabu list are discarded (tabu)

°

PRRERY: B 15 1 96 / 119

Short-term Memory

@ Tabu list

o Tabu list size - maximum number of attributes stored in the list (FIFO)
o Tabu list tenure - maximum number of iterations attribute remains in the list

@ Tabu list
o Last t moves
o Frequency-based

o Number of times a specific move is performed
e Penalize moves with higher frequency

PRRERY: B 15 1 97 / 119

Intensification and Diversification

@ Intensification

o Intensify the search in promising regions
@ Diversification

e Diversify the search across contrasting regions
@ Examples

e Varying the tabu list size
o Adjusting the cost structure

PRRERY: B 15 1 98 / 119

Observations

@ Tabu search can be highly effective

@ Tabu search can be prohibitively time consuming — Remedy: speed up
neighborhood search

PRRERY: B 15 1 99 / 119

Granular Tabu Search

@ Reduce the number of moves evaluated at each iteration
@ Routing and scheduling problems:
e Long connections are unlikely to be part of an optimal solution

PRRERY: B 15 1 100 / 119

Granular neighborhoods

@ Restriction of ordinary neighborhoods
o Consider only connections whose cost is below a threshold
o Consider only moves involving promising connections
e Threshold: v x (UB/n), v sparsification parameter; UB/n average cost of

connection in solution
o Intensification/diversification tool

@ small v — intensification
o large v — diversification

PRRERY: B 15 1 101 / 119

Vehicle routing problem

@ Set of connections:

e connections of the current and best solution
e connections involving the depot

e connections with costs less than threshold

]

Connections used as move generators
Savings heuristic

°
°
@ l-relocate, 2-relocate, swap, 2-change
e Tabu tenure: random in [5,10]

°

Granularity based intensification/diversification
e intensification: vin [1,2]
o diversification: no improvement in 15 X n iterations, then v = 5 for n iterations

PRRERY: B 15 1 102 / 119

AT H 3¢

Q &N
Q FEAFE () —RIAR

© EaARE () —fErkit
Q ETHRAEENEEIER
© EAARIENE

Q (&) ik

o Large-Scale Neighborhood Search

PRRERY: B 15 1

103 / 119

Compounded 1-relocate

O OT0 00— 6

Given the TSP tour T = (1, 2, 3,4, 5,6, 7, 8, 9, 10, 11)
The new TSP tour T' = (1, 2, 4, 5, 6, 3,7,9, 10, 8, 11)
The size of the 1-relocate neighborhood is O(n?)

The size of the compounded independent 1-relocate neighborhood is
©(1.7549")
(Proof is by solving a recursion for the number of paths from 1 to n+1)

PRRERY: B 15 1 104 / 119

Improvement Graph

e T=(123456,7809101)

OO OO OO0V O WG

@ Construct improvement graph

o-o-Kooo-b oo

Cl2 = 0
07=—(h3+dsa+ds7)+ (dha+dsz+ ds7)
cr11 = —(drg+ dgo+ dio1) + (d79 + diog + ds 1)

Only forward arcs are allowed

Node 1 is always kept fixed

Find shortest path from 1 to n+1 in O(n?) time
Negative cost shortest path implies an improving move

PRRERY: B 15 1 105 / 119

Compounded swap

OO ORO R ORORO OO O

Figure: T = (1,2, 3,4,5,6,7 8,09, 10, 11)

-0 O-F 000006

Figure: T' = (1, 2, 3, 5, 4, 6, 10, 8, 9, 7, 11)

PRRERY: B 15 1 106 / 119

Compounded 2-change

0RO OO O ORI 0RO e

Figure: T=(1,2,3,4,56,7 8,09, 10, 11)

Figure: T' = (1, 2, 3, 5, 4, 6, 10, 9, 8, 7, 11)

PRRERY: B 15 1 107 / 119

Moreover ...

e T=(1,22345672809 10, 11, 12, 1)
@ one could conduct the following moves at once

e swap 3 and 4
e change arc 9-10 and 12-1 to 9-12 and 10-1
o relocate 6 to the mid of 8 and 9

e T'=(1,24,35,7,8,6,9, 12,11, 10, 1)

PRRERY: B 15 1 108 / 119

AT H R
Q i

Q FEAFE () —RIAR

© EaARE () —fErkit
Q ETHRAEENEEIER
© EAARIENE

Q (&) ik

o VRP Ll

PRRERY: B 15 1

109 / 119

VRP 24|

PRRERY: B 15 1 110 / 119

RN T R -2 AR IR

venices (1) () ()
venide2 (1) () ()

W

vehicle m @ @ @

Figure: Multi tour representation

PRRERY: B 15 1 111 / 119

RN T - A FOR

JOROIIOROI RN ORO®

Figure: Single tour representation

@ Improvement graph is analogous to the TSP improvement graph

@ For every ordering of vehicle one obtains a different neighborhood

PRRERY: B 15 1 112 / 119

2 [2R Y [7

vehicle 1

‘
s G () () [0 fo

vehicle 3 @@@@@

@ The cost structure is not well defined for arc (41, 23)

@ Establish an alignment scheme to define and allow only forward arcs

PRRERY: B 15 1 113 / 119

MRIETTIA

GO O O

GG GCO®
G GEG G
@m@ ©,
cRiclc
QO8O @

ClElC,

Arbitrarily adjusted

i

PHRZIE R

Z [Bl & BE E]

vehicle 1

vehicle 2 \depg

vehicle 3

After applying the exchanges implied by the shortest path:

" D R0 0060 6
e § 006 66 >
e OO0 OO O O

PRRERY: B 15 1 115 / 119

2 (0] R AT 1K

o Additional flexibility:

o shortest path from left to right
e shortest path from right to left

o Additional complexity:
e moves no longer independent due to capacity and distance restriction

e Constructing improvement graph and finding shortest path take O(n2) time

PRRERY: B 15 1 116 / 119

e R TTA

@ For each node keep a working capacity label of each vehicle as well as a
distance label

@ available capacity[k] = available capacity of vehicle k in current solution

@ working capacity[/, k] = available capacity[k| + effects of changes
corresponding to shortest path to i

@ allow only feasible arcs with respect to working capacity in shortest path

PRRERY: B 15 1 117 / 119

1R 5R 22 [T B[] % [O 52 2 R

o Complexity of the search is O(n? + nm)
o O(n?) for creating the improvement graph and running the shortest path
algorithm
e O(nm) for updating the labels at each node once after all the incoming arcs to
the node is considered

PRRERY: B 15 1 118 / 119

Acknowledgment

This lecture note is based on Prof. Martin Savelsbergh’s tutorial on VRP. It is
used for non-commercial education.

PRRERY: B 15 1 119 / 119

	简介
	启发式算法（I）–解的生成
	节省费用法
	插入算法

	启发式算法（II）–解的改进
	基于集合覆盖的建模思路
	启发式算法的部署
	插入算法的部署
	2-change启发式准则的部署
	应用：打车问题的求解

	（比较）新的算法
	GRASP
	Advanced Neighborhood Search
	Tabu search
	Large-Scale Neighborhood Search
	VRP实例

