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@ In the TSP the objective is to find the shortest tour through a set of cities,
visiting each city exactly once and returning to the starting city.

@ Type of decisions:

e routing
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Figure
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Vehicle Routing Problem

@ In the VRP a number of vehicles located at a central depot has to serve a set
of geographically dispersed customers. Each vehicle has a given capacity and
each customer has a given demand. The objective is to minimize the total
distance traveled.

@ Type of decisions

e assigning
e routing
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Vehicle Routing Problem

Figure
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Vehicle Routing Problem with Time Windows

@ In the VRPTW a number of vehicles is located at a central depot and has to
serve a set of geographically dispersed customers. Each vehicle has a given
capacity. Each customer has a given demand and has to be served within a
given time window.

@ Type of decisions

e assigning
e routing
e scheduling
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VRPTW
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Pickup and Delivery Problem with Time Windows

@ In the PDPTW a number of vehicles has to serve a number of transportation
requests. Each vehicle has a given capacity. Each transportation request
specifies the size of the load to be transported, the location where it is to be
picked up plus a pickup time window, and the location where it is to be
delivered plus a delivery time window.

@ Type of decisions

e assigning
e routing
e scheduling

PRRERY: B 15 1 10 / 119
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PDPTW

A Pickup
@ Delivery
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o fELEFR

e minimize vehicles

minimize miles

minimize labor

satisfy service requirements
maximize orders

maximize volume delivered per mile
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B VA ()

o fELEFR

e minimize vehicles

minimize miles

minimize labor

satisfy service requirements
maximize orders

maximize volume delivered per mile
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B VA ()

o MIHIE
e Single vs. multiple depots
o Vehicle capacity: homogenous vs. heterogeneous; volume vs. weight
o Driver availability: fixed vs. variable start times
o Delivery windows: hard vs. soft; single vs. multiple; periodic schedules
e Service requirements: Maximum ride time; Maximum wait time
e Fixed and variable delivery times
o Fixed vs. variable regions/route
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HTHY AR

@ Dynamic routing and scheduling problems
e More and more important due to availability of GPS and wireless
communication
e Information available to design a set of routes and schedules is revealed
dynamically to the decision maker: Order information (e.g., pickups), Vehicle
status information (e.g., delays), Exception handling (e.g., vehicle breakdown)
@ Stochastic routing and scheduling problems

o Size of demand
o Travel times

PRRERY: B 15 1 16 / 119
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Initial Intermediate

WAEBEHN s(i,j) = c(0,i) + <(0,)) — c(i,j)
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Clarke-Wright &%

@ Make n routes: vg — v; — v, for each i > 1;

@ Compute the savings for merging delivery locations 7 and j for all /,j > 1 and
i # J;

@ Sort the savings in descending order; Create out-and-back routes for all
customers.

o

Starting at the top of the (remaining) list of savings, merge the two routes
associated with the largest (remaining) savings, provided that:
e The two delivery locations are not already on the same route;
o Neither delivery location is interior to its route, meaning that both nodes are
still directly connected to the depot on their respective routes;
e The demand G and distance constraints D are not violated by the merged
route.

@ Repeat step 3 until no additional savings can be achieved.
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1 5 RS

o TAETHN s(i,j) = (0, i) + <(0,)) — Ac(i,))
@ The larger A, the more emphasis is placed on the distance between customers
being connected
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5
D

@ Start with a set of unrouted stops;
@ Select an unrouted stop; Insert selected stop in current set of routes;

© Repeat step 2 until no unrouted stop is available.

KB TSP AN, AEId AR E IR AR A BOEA, B,
RN, REFHA

PRRERY: B 15 1 24 /119



Nearest addition

@ Selection: If partial tour T does not include all cities, find cities k and j, j on
the tour and k not, for which ¢(j, k) is minimized.

o Insertion: Let {i, j} be either one of the two edges involving jin T, and
replace it by {i, k} and {k,j} to obtain a new tour including k.
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Nearest Insertion

@ Selection: If partial tour T does not include all cities, find cities k and j, j on
the tour and k not, for which ¢(j, k) is minimized.

o Insertion: Let {/,j} be the edge of T which minimizes c(i, k) + c(k, j) — c(i, }),
and replace it by {i, k} and {k, j} to obtain a new tour including k.
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Farthest Insertion

@ Selection: If partial tour T does not include all cities, find cities k and j, j on
the tour and k not, for which c(j, k) is maximized.

o Insertion: Let {/,j} be the edge of T which minimizes c(i, k) + c(k, j) — c(i, }),
and replace it by {i, k} and {k, j} to obtain a new tour including k.
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Cheapest Insertion

@ Selection: If partial tour T does not include all cities, find for each k not on
T the edge {/,j} of T which minimizes c(T, k) = c(i, k) + c(k,j) — c(i, ).
Select city k for which ¢(T, k) is minimized. (Select the nearest k to any
edge in T)

@ Insertion: Let {/,j} be the edge of T for which ¢(T, k) is minimized, and
replace it by {/, k} and {k,j} to obtain a new tour including k.
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Nearest addition: 2

Nearest insertion: 2

Cheapest insertion: 2

Farthest insertion: >2.43 (Euclidean); >6.5 (Triangle inequality)
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KA RS

@ Priority Queue
o insert(value, key)
o getTop(value, key)
o setTop(value, key)
@ k-d Tree
o deletePt(point)
o nearest(point)
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Drt

Tree->deletePt(StartPt)
NNOut[StartPt] := Tree->nearest(StartPt)
PQ->insert(Dist(StartPt, NNOut(StartPt)), StartPt)
loop n-1 time
loop
PQ->getTop(ThisDist, x)
y := NNOut[x]
If y not in tour, then break
NNOut[x] = Tree->nearest(x)
PQ->setTop(Dist(x, NNOut[x]), x)
Add point y to tour; x is nearest neighbor in tour
Tree->deletePt(y)
NNOut[y] = Tree->nearest(y)
PQ->insert(Dist(y, NNOut[y]), y)

Figure

PRRERY: B 15 1

@ Start with a feasible solution
x; Define neighborhood N(x).
@ Is there an improving
neighbor y in N(x) but not in
the tour?
o No. x is locally optimal
o Otherwise. Add y to tour
and start search from y
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2-change (2-opt)

Take 2 arcs from the tour, reconnect these arcs with each other and calculate new
travel distance. If this modification has led to reduction in total travel distance,
the current route is updated. Repeat the steps until no more improvements are
found or the maximum number of iterations is reached

0(n2) possibilities
Figure
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3-change (3-opt)

Similar as the 2-opt except that 3 arcs are taken in each iteration.

0(n3) possibilities
Figure
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1-relocate

Take one point out and reinsert it in the tour.

0(n2) possibilities
Figure
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2-relocate

Take two points out and reinsert them in the tour.

0(n?2) possibilities

Figure

PRRERY: B 15 1 36 / 119



swap

Swap the sequences of two points.

0(n2) possibilities

Figure
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GENI

Select 3 points as the initial subset of tour, and insert the remaining points while
conducting 3-opt or k-opt

@2

Figure
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Vehicle Routing and Scheduling

Figure
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Vehicle Routing and Scheduling

Figure
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@ Assignment decisions are often the most important
@ Assignment decisions are often the most difficult
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Figure
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Figure
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Figure
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Figure
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Figure
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it

@ Advantage: very flexible

e heuristics for route generation — column generation
e complicating constraints in route generation

@ Disadvantage
o small to medium size instances
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L

Efficient (fast)
Effective (good quality solutions)
Easy to implement

Easy to extend

time windows

route duration

variable delivery quantities
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Algorithm 1: Insertion Heuristics

1 N ={unassigned customers}
2 R ={set of routes}
3 while N # ¢J do

4 p* = —wo

5 for je N do

6 for re Rand (i—1,i) € Rdo

7 if Feasible(i,j) and Profit(i, j)> p* then
8 re = r,ix = i jx = j, px = Profit(i, j)
9 end

0 end

1 end

2 Insert(*, *)

3 Update(r*)

4 | N=M{*}

5 end
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o Complexity is O(n®) if Feasible(*), Profit(*), Update(*) are at most O(n?)
o For VRP: Feasible(*): d; < Q—qr; g- = g, + d,
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Arrival time

L\ .

may increase
Figure
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How to quickly check
feasibility?
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depot | l

Latest time delivery can take place
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o Notation: [Ek, Lk] time window on start of delivery at k

@ Auxiliary information: ey earliest time delivery can take place at k; /; latest
time delivery can take place at k

o Feasible()
° dj < Q —qr
o g = max{Ej, e—1+ t,',].,j}&/j = min{LJ-, I — tj’,'}
o < IJ

e Update()

o for k=1i—1to 0: Ik = min{lk, lkt+1 — tiks+1}
o fork=iton e = max{ek, €k—1 — tk—l,k}
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SRR RIATE

@ Notation: T planning horizon, L route duration limit

@ Auxiliary information: eg earliest start time route eg = max{0, e,+1 — L}; lht1
latest completion time route /11 = min{lp + L, T}; f; total travel time from i
until the end ; b; total travel time from the beginning until 7

o Feasible()

o enr1 = max{eni1, 6+ tj; + fi}, & = max{eo, €n11 — L}
o I = min{lo, IJ — ti—1,j— b,‘_l}, /n+1 = min{ln+1, I + L}
o di<Q—gqr
o < /J
0 e <l & lht1 > eny1
e Update()
o fork=i—1to0: lx = min{/k, lk+1 — tk,k+1}
o for k=ito n e = max{ex, ex—1 — tk—1,k}
o if e updated: for k =0 to n— 1: ex = max{ek, €—1 — tk—1,k}
o if 41 updated: for k=n+1to 0: l = min{lx, lkt1 — tirt+1}
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2-change [B]Ji

Figure
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Lexicographic search (FH1IER)

2-changes

Figure
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U, Uy v, V|

Let U= {u,un,...,u}, V={wvi,v,...,v}

o Total travel time T(U) = Z;:ll t(uj, Uiy1)

o Earliest delivery time of the last node E(uyx) assuming uy is left at the
opening of its time window max,cy{E; + T(uj, ..., ux)}

o Latest delivery time L(uy) such that the path remains feasible
mingey{Li — T(u1,...,u;)}
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T(UUV) = T(U) + t(uk, v1) + T(V)
o E(v)) = max{E(ug) + t(ug, v1) + T(V), E(v))}

o L(u) = min{L(u),L(v1) — T(V) — t(uk, 1)}
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U, Uy v, V|

o Earliest delivery at vy @ E(ug) + t(uk, v1)
o Earliest delivery at v;: E(uk) + t(uk, vi) + T(V)
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U, Uy v, V|

o Latest delivery at wy : L(vy) — t(ug, v1)
o Latest delivery at uy : L(vy) — t(ug, v1) — T(U)
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@ The set of global variables makes it possible to test feasibility of an exchange
in constant time

@ The lexicographic search strategy makes it possible to maintain the correct
values for the set of global variables in constant time
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Dial-a-Ride Problem

e Dispatch vehicles to pickup person/package at one location (origin) and
deliver the person/package at another location (destination)
@ Service related constraints
o pickup window / delivery window
e maximum wait time: Limit waiting time at a stop before departing
e maximum ride time: Limit time between pickup and delivery
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Feasibility testing

Given a sequence of pickups and deliveries does there exist a feasible schedule
satisfying pickup and delivery windows, maximum wait time, and maximum ride
time constraints?
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Example

e Waiting time limit: 10
@ Ride time limit: 1.5 x ride time
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Example

PHRZIE R

i

Stop Early Late Arrival Departure ~ Waiting  Travel
1+ 10.15 103 10.15 10.15 0 20
2+ 10.45 11 10.35 10.45 10 15

1- 11 11.15 11 11 0 10

2- 11.2 11.4 11.1 11.2 10 15
3+ 11.4 12 11.35 11.4 5 50

3- 12.3 13 12.3 12.3 0

15 1
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Example (cont.)

1+

Stop  Early Late Arrival Departure ~ Waiting  Travel

1+ 10.15 103 10.15 10.15 0 20
2+ 1045 11 10.35 10.45 10 15
1- 11 11.15 11 11 0 10
2- 11.2 11.4 111 11.2 10 15
3+ 11.4 12 11.35 11.4 5 50
4+ 121 12.3 115 12.1 20 40
3- 12.3 13 125 125 0 20
4- 13 1345 131 13.1 0

PRRERY: B 15 1 74 /119



Example (cont.)

PHRZIE R

i

Stop  Early Late Arrival Departure ~ Waiting  Travel
1+ 10.15 10.3 10.15 10.15 0 20
24 10.45 11 10.35 10.45 10 15

1- 11 11.15 11 11 0 10

2- 11.2 11.4 11.1 11.2 10 15
3+ 11.4 12 11.35 11.4 5 50
44 12.1 12.3 11.5 12.1 20 40

3- 12.3 13 125 125 0 20

4- 13 1345 131 13.1 0

Stop  Early Late Arrival Departure ~ Waiting  Travel
1+ 10.15 10.3 10.2 10.2 0 20
24 10.45 11 10.4 10.5 10 15

1- 11 11.15  11.05 11.05 0 10

2- 11.2 11.4 11.15 11.25 10 15
34+ 11.4 12 11.4 11.5 10 10
44 12.1 12.3 12 12.1 10 40

3- 12.3 13 12.5 12.5 0 20

4- 13 1345 131 13.1 0

15 1
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Feasibility testing

@ Can be done in linear time ...

@ Invariant property: No feasible schedule can have an arrival or departure time
earlier than the computed arrival and departure times

o Notation:

—

e, ;] time window

waiting time limit

ride time limit

arrival time

departure time

latest feasible departure time

iy i

*’-\\D'\)? S_ €
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Phase |-Forward

Account for pickup and delivery windows and maximum waiting time
constraints

Normal updates:
Ai=Dia+tiay; Dj=max{e, Al Lj=min{lj, L1+ tj1j+w}
Infeasibility: A; > I;; Lj<e¢

Special update when Aj+w < e Aj= ¢ —w; D; = ¢
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Phase II-Backward

@ Update arrival and departure times and "check” ride time constraints:
Waiting time from j until the end of route W

@ Normal updates:
Dj = Aj+1 — tj—l,j; Aj = max{ i, UVj — } W= W+ (D — A)
e Infeasibility: A = (D;. —D;,) — D, +A> L A>W

@ Special update when A > W
Dj = DJ + A; AJ = max{Aj, DJ — w}; W=w-A

I+I ' i
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Phase Ill-Forward

o Finalize arrival and departure times and check ride time constraints
o Normal updates: A; = Dj_1 + ti_1j; D;j = max{A;, D;}

@ Infeasibility (drop-off point j = i_):
A= (DL — D/+) —ati i, Di >L; ;A>0
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(] People transportation

delivery window [0, /;]

no pickup window

waiting time at pickup only

different ride time limits

consecutive stops at same location (waiting time per location rather than stop)

@ Package transportation: no waiting time limits
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Greedy Randomized Adaptive Search Procedure (GRASP)

@ Construction 4+ Improvement

o Greedily create feasible set of routes; Improve feasible set of routes
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K 2RI R

@ independent neighborhood searches

@ starting solutions obtained from a previous local optimum by a suitable
perturbation method

Algorithm 2: GRASP-1

Initialization: best = oo
while stop criterion not reached do
Randomly create feasible set of routes
Improve feasible set of routes (local search)
if Better than best then
| Update best
end
end
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K 2RI R

@ independent neighborhood searches

@ random starting solutions

Algorithm 3: Grasp-2

1 Initialization: best = o0

2 Greedily create feasible set of routes

3 while stop criterion not reached do

4 Perturb feasible set of routes

5 Improve feasible set of routes (local search)
6 if Better than best then

7 | Update best

8 end

9 end
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Greedy algorithm

@ Constructs a solution one element at a time:

Define candidate elements

Apply greedy function to each candidate element

Rank candidate elements according to greedy function value
Add best ranked element to solution
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Semi-greedy algorithm

@ Constructs a solution one element at a time:

Define candidate elements

Apply greedy function to each candidate element

Rank candidate elements according to greedy function value

Place well-ranked elements in a restricted candidate list (RCL)

Select an element from the RCL at random and add it to the solution
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Restricted Candidate List

o Cardinality based:
o Place k best candidates in RCL
@ Value based I:

o Place all candidates having greedy value better than ax max value in RCL
(with0 < a<1)

@ Value based II:

o Place all candidates having greedy value better than min value + ax (max
value - min value) in RCL (with 0 < a < 1)
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Semi-greedy

Algorithm 4: Grasp-2

Initialization: best = o
while stop criterion not reached do
Semi-greedily create feasible set of routes
if Better than best then
| Update best
end
end

PRRERY: B 15 1
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Greedy Randomized Adaptive Search Procedure

Algorithm 5: Grasp-2

Initialization: best = o
while stop criterion not reached do
Semi-greedily create feasible set of routes
Improve feasible set of routes
if Better than best then
‘ Update best
end
end

PRRERY: B 15 1
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GRASP

@ GRASP tries to capture good features of greedy & random constructions
o lteratively

e samples solution space using a greedy probabilistic bias to construct a feasible
solution
o applies local search to attempt to improve upon the constructed solution
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@ Advanced Neighborhood Search
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Neighborhood search - observations

@ Weakness:

o looks only one step ahead, and may get trapped in a bad local optimum
@ Strength:

o Fast and easy to implement
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Neighborhood search - sophisticated enhancements

@ Goal: much:

o Increase quality of solution
e Do not increase time to find solution too

@ Tabu Search
o Large Scale Neighborhood Search
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@ Tabu search
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Tabu search

Local minimum I
Global minimum t

Figure

@ Strategy to escape from a local optimum and continue the search

@ Implementation
o Best move is always performed
e Avoid cycling using short-term memory
o Attributes of recent solutions stored in tabu list
o Moves involving attributes in tabu list are discarded (tabu)

°
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Short-term Memory

@ Tabu list

o Tabu list size - maximum number of attributes stored in the list (FIFO)
o Tabu list tenure - maximum number of iterations attribute remains in the list

@ Tabu list
o Last t moves
o Frequency-based

o Number of times a specific move is performed
e Penalize moves with higher frequency
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Intensification and Diversification

@ Intensification

o Intensify the search in promising regions
@ Diversification

e Diversify the search across contrasting regions
@ Examples

e Varying the tabu list size
o Adjusting the cost structure
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Observations

@ Tabu search can be highly effective

@ Tabu search can be prohibitively time consuming — Remedy: speed up
neighborhood search
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Granular Tabu Search

@ Reduce the number of moves evaluated at each iteration
@ Routing and scheduling problems:
e Long connections are unlikely to be part of an optimal solution

PRRERY: B 15 1 100 / 119



Granular neighborhoods

@ Restriction of ordinary neighborhoods
o Consider only connections whose cost is below a threshold
o Consider only moves involving promising connections
e Threshold: v x (UB/n), v sparsification parameter; UB/n average cost of

connection in solution
o Intensification/diversification tool

@ small v — intensification
o large v — diversification

PRRERY: B 15 1 101 / 119



Vehicle routing problem

@ Set of connections:

e connections of the current and best solution
e connections involving the depot

e connections with costs less than threshold

]

Connections used as move generators
Savings heuristic

°
°
@ l-relocate, 2-relocate, swap, 2-change
e Tabu tenure: random in [5,10]

°

Granularity based intensification/diversification
e intensification: vin [1,2]
o diversification: no improvement in 15 X n iterations, then v = 5 for n iterations
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o Large-Scale Neighborhood Search
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Compounded 1-relocate

O OT0 00— 6

Given the TSP tour T = (1, 2, 3,4, 5,6, 7, 8, 9, 10, 11)
The new TSP tour T' = (1, 2, 4, 5, 6, 3,7,9, 10, 8, 11)
The size of the 1-relocate neighborhood is O(n?)

The size of the compounded independent 1-relocate neighborhood is
©(1.7549")
(Proof is by solving a recursion for the number of paths from 1 to n+1)
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Improvement Graph

e T=(123456,7809101)

OO OO OO0V O WG

@ Construct improvement graph

o-o-Kooo-b oo

Cl2 = 0
07=—(h3+dsa+ds7)+ (dha+dsz+ ds7)
cr11 = —(drg+ dgo+ dio1) + (d79 + diog + ds 1)

Only forward arcs are allowed

Node 1 is always kept fixed

Find shortest path from 1 to n+1 in O(n?) time
Negative cost shortest path implies an improving move
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Compounded swap

OO ORO R ORORO OO O

Figure: T = (1,2, 3,4,5,6,7 8,09, 10, 11)

-0 O-F 000006

Figure: T' = (1, 2, 3, 5, 4, 6, 10, 8, 9, 7, 11)
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Compounded 2-change

0RO OO O ORI 0RO e

Figure: T=(1,2,3,4,56,7 8,09, 10, 11)

Figure: T' = (1, 2, 3, 5, 4, 6, 10, 9, 8, 7, 11)
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Moreover ...

e T=(1,22345672809 10, 11, 12, 1)
@ one could conduct the following moves at once

e swap 3 and 4
e change arc 9-10 and 12-1 to 9-12 and 10-1
o relocate 6 to the mid of 8 and 9

e T'=(1,24,35,7,8,6,9, 12,11, 10, 1)
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VRP 24|
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Figure: Multi tour representation
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Figure: Single tour representation

@ Improvement graph is analogous to the TSP improvement graph

@ For every ordering of vehicle one obtains a different neighborhood
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vehicle 3 @@@@@

@ The cost structure is not well defined for arc (41, 23)

@ Establish an alignment scheme to define and allow only forward arcs
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vehicle 1

vehicle 2 \depg

vehicle 3

After applying the exchanges implied by the shortest path:

" D R0 0060 6
e § 006 66 >
e OO0 OO O O

PRRERY: B 15 1 115 / 119



2 (0] R AT 1K

o Additional flexibility:

o shortest path from left to right
e shortest path from right to left

o Additional complexity:
e moves no longer independent due to capacity and distance restriction

e Constructing improvement graph and finding shortest path take O(n2) time
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e R TTA

@ For each node keep a working capacity label of each vehicle as well as a
distance label

@ available capacity[k] = available capacity of vehicle k in current solution

@ working capacity[/, k] = available capacity[k| + effects of changes
corresponding to shortest path to i

@ allow only feasible arcs with respect to working capacity in shortest path
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o Complexity of the search is O(n? + nm)
o O(n?) for creating the improvement graph and running the shortest path
algorithm
e O(nm) for updating the labels at each node once after all the incoming arcs to
the node is considered
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