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Abstract

This paper addresses the share-a-ride problem with parcels’ roaming delivery locations (SARP-
PRDL), where a single vehicle fleet serves both passenger and parcel requests, allowing parcels
to be sent to one of the multiple candidate locations based on recipients’ roaming routes. The
problem is divided into static and dynamic request scheduling, both sharing similar model
structure and solution routine. We formulate the static problem as a mixed-integer nonlinear
program (MINLP) to maximize the service platform’s revenue, which is then converted into
a mixed-integer linear program (MILP) via linearization. For dynamic requests, we apply
a reoptimization strategy to identify potential route improvements. Employing a branch-
and-price (B&P) framework, we develop a matheuristic approach and a local search-inspired
heuristic for effective column generation in the pricing subproblem. A case study in the
Chengdu network shows our solution’s effectiveness in static request scheduling. Incorporating
roaming delivery locations in static scheduling increases request completions and revenue. For
dynamic request scheduling, the proposed vehicle route reoptimization strategy is found to
outperform the straightforward greedy insertion approach when fewer idle vehicles are present
after the static request scheduling. But this advantage may diminish with the increase of idle
vehicles.
Keywords: Share-a-Ride Problem; Roaming delivery locations; Branch-and-Price
framework; Matheuristic

1. Introduction

Despite decades of rapid growth, the global e-commerce market continues to expand, with
retail e-commerce sales reaching an estimated $5.8 trillion in 2023 and projected to surpass $8
trillion by 2027 (Statista, 2023). E-commerce platforms coordinate most of the world’s parcel
deliveries, with the number of deliveries expected to reach 256 billion by 2027 (Statista, 2022).
This massive volume poses significant challenges to current logistics systems, which remain
vulnerable to external disruptions. Moreover, both shippers and recipients now demand higher
service quality. Leading platforms like Amazon and Alibaba offer premium services, such as
72-hour, 24-hour, same-day, or even 1-hour delivery, exclusively to “prime” members. While
these restrictions align with platforms’ revenue strategies via subscription services, they are
also driven by the rising demand for fast, reliable last-mile delivery (DHL, 2023).

Challenges in last-mile delivery, including the rising parcel demand and customers’ expec-
tations for fast arrivals, have driven e-commerce platforms to strengthen partnerships with
logistics providers. Alibaba, for instance, established Cainiao Network to enhance logistics
efficiency through smart solutions and digital supply chains. However, despite innovations,
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the high costs and environmental impact of dedicated delivery trucks remain problematic. To
address these issues, Arslan et al. (2018) introduced crowdsourced delivery, leveraging private
passenger vehicles for parcel transport via platforms like Kanga, Renren Kuaidi, and Ama-
zon Flex. This approach offers the potential for more efficient, cost-effective, and sustainable
deliveries.

Crowdsourced delivery has gained popularity in both industry and academia (Alnaggar
et al., 2021). Researchers suggest that utilizing occasional drivers through crowdshipping ef-
fectively addresses environmental and economic challenges in logistics (Mancini et al., 2022;
Voigt et al., 2022). However, inefficiency from missed deliveries persists due to the unavail-
ability of recipients at the destinations or at the scheduled delivery time windows, thereby
requiring multiple delivery attempts. To address this, Reyes et al. (2017) propose roaming
delivery locations, where goods are delivered to the trunk of the recipient’s vehicle by tracking
its position. This concept has been implemented by companies like Volvo and Audi. Volvo,
for example, used digital key technology to allow customers to select their cars as delivery
points, significantly reducing failed first-attempt deliveries (Volvo Cars, 2014; Audi, 2015).

Integrating crowdshipping with roaming delivery offers a promising solution for efficient,
cost-effective, and sustainable deliveries while reducing failed first-attempt deliveries. Taxis,
particularly ride-hailing taxis, are well-suited for crowdshipping if the shipments are prof-
itable and passenger services remain unaffected. The stagnation in ride-hailing market growth
further motivates drivers to adopt crowdshipping. The simultaneous transportation of passen-
gers and parcels is modeled as the share-a-ride problem (SARP) (Li et al., 2014), benefiting
drivers, riders, and shippers/recipients alike. SARP has been extensively studied, addressing
diverse objectives and complexities, such as carpooling (Yu et al., 2018), stochastic travel
times and delivery locations (Li et al., 2016a), multi-depot scenarios (Yu et al., 2023b), and
the coordination of ride-hailing with logistics vehicles (Ji et al., 2024).

Building on existing research in share-a-ride and routing problems with roaming deliv-
ery, this study explores an integrated taxi-based service for the simultaneous transportation
of passengers and parcels. Passengers and shippers/recipients can submit requests specifying
pick-up and drop-off locations along with time windows through a dial-a-ride platform manag-
ing the taxi fleet. Dynamic requests may also be accommodated during operations, subject to
available capacity after fulfilling pre-scheduled requests. When possible, route reoptimization
is employed to integrate these dynamic requests. While passengers and parcels may share
a vehicle, parcel handling is restricted when passengers are on board to prioritize passenger
service. Both pre-scheduled and dynamic requests can register multiple candidate drop-off
locations for recipients, offering flexibility in cases where the preferred delivery location is
unavailable. This framework supports same-day or rapid 1-2 hour delivery, especially for re-
cipients with mobile schedules. The operator’s objective is to optimize task assignments to
maximize the total revenue.

The main contributions of this study are as follows:

• We introduce a novel variant of the share-a-ride problem that incorporates parcels’
roaming delivery locations and dynamic delivery requests, where each pre-scheduled
or dynamic parcel is delivered to exactly one of several candidate locations specified
by the recipient. The problem is formulated as a mixed-integer nonlinear programming
(MINLP) and transformed into an equivalent mixed-integer linear programming (MILP)
through linearization techniques. The MILP formulation can be efficiently solved using
off-the-shelf solvers for small-scale instances.

• We propose an efficient matheuristic solution approach based on the branch-and-price
(B&P) framework for large-scale instances of the introduced problem. While our ap-
proach builds on the existing heuristic for the Vehicle Routing Problem (VRP) and
its extensions, we customize it by incorporating a heuristic search procedure within the
B&P framework. The problem is reformulated into a path-based model, and our method
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iteratively addresses the restricted master problem alongside the pricing subproblem. In
each iteration of the pricing subproblem, a promising column is generated through a
greedy insertion-based local search procedure.

• We validate the performance of the proposed model and solution approach using real-
world instances. The numerical results demonstrate the effectiveness of our approach
in scheduling static requests, outperforming the adaptive large neighborhood search
(ALNS) algorithm in both solution quality and efficiency. Furthermore, incorporating
the roaming delivery location strategy increases the number of completed requests, lead-
ing to higher revenue.

The remainder of this paper is organized as follows. Section 2 reviews the related literature.
Section 4 presents the share-a-ride problem with roaming delivery locations of parcels. Section
5 is devoted to the B&P-based matheuristic solution method for the SARP-PRDL. Section 6
summarizes the computational results of the proposed model and solution method. Finally,
section 7 concludes this work.

2. Literature review

We review the literature related to this study based on three parts: share-a-ride problem,
last-mile delivery with roaming delivery locations and dynamic vehicle routing problem with
reoptimization of vehicle routes.

2.1. Share-a-ride problem
The Share-a-Ride Problem extends the Dial-a-Ride Problem (DARP) by incorporating

vehicle routing and scheduling for passengers who specify their pick-up and drop-off locations
within certain time windows (Cordeau et al., 2007). For a comprehensive understanding of the
DARP, readers are referred to Ho et al. (2018). Distinct from the DARP, the SARP integrates
parcel delivery into passenger scheduling.

The seminal work on the SARP by Li et al. (2014) introduces a mixed-integer linear pro-
gramming model, solvable with commercial solvers for small-scale instances, and a greedy
heuristic for larger instances by integrating parcel requests into predefined passenger routes.
Li et al. (2016a) extend SARP by incorporating stochastic travel times and delivery locations,
while Li et al. (2016b) propose an ALNS algorithm, outperforming commercial solvers. Yu
et al. (2018) introduce the General Share-a-Ride Problem (G-SARP), allowing multiple pas-
sengers, which is further extended to multi-depot settings in Yu et al. (2023b). Considering
vehicle heterogeneity, Lu et al. (2022) employ a mixed fleet of electric and gasoline vehicles
using a time-expanded network and MILP formulation. Yu et al. (2023a) design a novel
matheuristic approach combining simulated annealing with mutation strategies (SAMS) and
a set partitioning method, outperforming SAMS on large-scale instances. Zhan et al. (2023)
explore passenger-and-parcel sharing with a mixed fleet of vehicles and electric motorcycles,
proposing a two-level lexicographic multi-objective function from the platforms perspective.
More recently, Gao et al. (2024) study the stochastic SARP in ride-hailing systems, prioritiz-
ing passengers under uncertain requests. Ji et al. (2024) develop an exact framework using
a mixed fleet of ride-hailing and logistics vehicles, demonstrating potential in high-demand
scenarios for integrated passenger and parcel services.

2.2. Last-mile delivery with roaming delivery locations
The concept of roaming delivery location is initially introduced in vehicle routing prob-

lem within the context of last-mile delivery. The pioneer work on vehicle routing problem
with roaming delivery locations (VRPRDL) by Reyes et al. (2017) presents a mixed integer
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programming formulation aimed at minimizing travel cost. They also design a neighborhood-
based search combining construction and improvement heuristic algorithm to solve the VR-
PRDL based on the problem-specific techniques. Following this, Ozbaygin et al. (2017) refor-
mulate the arc-based model as a set partition model and design a branch-and-price algorithm
to address the VRPRDL, with considering a hybrid delivery strategy allowing a delivery to
either the customer’s home or to the trunk of customer’s vehicle. Based on previous work,
Ozbaygin et al. (2019) establish an iterative reoptimization framework to tackle the last-mile
delivery problem. Their proposed framework adjusts sub-optimal or even infeasible solutions
of planned delivery schedule incurred by the change of customer itineraries to feasible solu-
tions, thereby adapting dynamic scenarios. He et al. (2020) investigate the last-mile delivery
system with roaming delivery locations and stochastic travel times, formulating a two-stage
stochastic programming model and devising an effective metaheuristic algorithm that inte-
grates a sampling strategy. Dragomir et al. (2022) expand the VRPRDL by considering the
Pickup and Delivery Problem (PDP) with alternative locations and overlapping time windows,
applying a multi-start, adaptive large neighborhood search with problem-specific operators to
address the problem.

2.3. Dynamic vehicle routing problem with reoptimization of vehicle routes
Dynamic vehicle routing problem (DVRP) differs from classical vehicle routing due to its

requests not fully known in advance. These requests arrive dynamically during the execution
of planned routes, which may change existing routes if there is the insertion of requests. For a
comprehensive review of the DVRP, one may refer to Zhang et al. (2023). When it comes to
solution approach, there are many studies proposing reoptimization strategies to solve DVRP.

Chen and Xu (2006) extended column generation approach for solving dynamic vehicle
routing problem. Their proposed approach generates new columns in real-time by leveraging
previously generated columns, and at each decision point, it solves a set-partitioning formu-
lation using the columns generated up to that moment. In Vonolfen and Affenzeller (2016),
a reoptimization procedure begins when any new request arrives. They use a constructive
heuristic to insert the new request into the best location of existing routes, and then a tabu
search heuristic is applied to improve new route plan. Finally, they update waiting time at
each location based on intensity-based waiting heuristic strategy. For the DVRP with roaming
delivery locations, Ozbaygin et al. (2019) establish an iterative reoptimization framework to
tackle the potential problem that sub-optimal or even infeasible solution of planned delivery
schedule may be incurred by the change of customer itineraries. Steever et al. (2019) develop
an auction-based heuristic approach to achieve the arrival-triggered reoptimization, and this
approach identifies solutions that are both effective in meeting customer needs in the present
and in preparing couriers to respond to future demand. Archetti et al. (2021) design a solution
approach based on an insertion algorithm evaluating each request singularly. This insertion
method is a foundation of their proposed reoptimization approach using variable neighborhood
search algorithm. Sze et al. (2024) propose adaptive variable neighborhood search algorithm
to generate routes in static environment and reoptimize routes based on the traffic information
of urgency of the accidents.

This paper distinguishes itself from prior studies in two key ways: (a) We identify a new
variant of the SARP, which accounts for roaming delivery locations. If a parcel cannot be deliv-
ered to the recipients preferred location, it can be redirected to alternate candidate locations.
Additionally, we develop a tailored matheuristic approach for static request scheduling and
implement a reoptimization strategy to accommodate dynamic requests within the existing
schedule. (b) Our model supports multiple sharing modespassenger-passenger, passenger-
parcel, and parcel-parcel sharingwhile prioritizing passenger service by restricting parcel op-
erations when passengers are on board.
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3. Problem statement

We study a share-a-ride problem with parcels’ roaming delivery locations (SARP-PRDL),
where passengers and parcels can be transported by the same vehicle fleet. In this study,
we consider a dial-a-ride service platform serving both passenger and parcel requests. Both
passengers and parcels being transported within the same city. Parcel requests belong to
express delivery within the same city, meaning that parcels must be picked up and delivered
on the same day. Furthermore, the parcels should be delivered exactly based on recipients’
current locations.

Customers may submit static requests before the service begins. A static passenger request
includes the trips origin, destination, pickup time window within the platform’s specified oper-
ating hours, latest arrival time, and any personal belongings. Similarly, shippers submit static
parcel requests with details such as the pickup location and parcel size, while recipients spec-
ify delivery locations and time windows. Recipients may register multiple delivery locations
based on their planned stops for the day. The platform optimizes schedules to maximize the
fulfillment of these static requests. Additionally, dynamic requests can be submitted during
operations, with feasible ones integrated through route reoptimization of remaining segments.

In a share-a-ride transport mode, three sharing types are permitted within the same vehi-
cle: passenger-and-passenger, passenger-and-parcel, and parcel-and-parcel sharing. However,
detours from passenger-and-passenger and passenger-and-parcel sharing can impact the pas-
senger experience. To mitigate such inconvenience, parcel pickups and deliveries are performed
only when no passengers are on board, ensuring that passengers are prioritized, and their travel
experience remains unaffected. Hence, a passenger’s travel experience may only be influenced
by the ride-sharing with other passengers.

Origin of passenger request Destination of passenger request Roaming deliveries of parcel requestPickup of parcel request
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P1

P2

P2
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Driver 1
Driver 1

Vehicle route 1
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Recipient’s roaming route

Original route Reoptimized route

Dynamic 

parcel request

Figure 3.1: An illustrative example of share-a-ride operation mode. Left: original route scheme in the time
period [0, t]. Right: reoptimized route scheme in the time period [t∗, T ].

As shown in Figure 3.1 and Figure 3.2, we present an example with three passenger requests
and two parcel requests to demonstrate the share-a-ride mode. The former figure displays the
scheduled routes before and after the appearance of a dynamic request “G2” while the latter
figure presents the corresponding timelines based on these routes. In the initial plan, Passenger
2 is assigned to Driver 2; however, with the introduction of a reoptimization procedure, this
request is reassigned to Driver 1’s route. In the updated schedule, Driver 2, after completing
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Figure 3.2: An illustrative space-time figure of original and reoptimized vehicle routes.

Passenger Request 3, serves Parcel Request 2 instead of Passenger Request 2. Assuming ca-
pacity constraints are met, the reoptimized route accommodates all requests without violating
time constraints.

The travel fare for each passenger or shipper is determined by multiplying the fare per
unit distance by the shortest travel distance between the specified origin and destination.
Passengers who experience inconvenience due to detours will receive a fare discount (e.g., 20%
off the original fare), whereas parcels are not eligible for this discount.

In this study, the revenue of the dial-a-ride platform is derived from the total travel fares
paid by passengers and shippers. Maximizing this revenue is established as the primary
objective of the SARP-PRDL. Given a specific number of vehicles, we aim to determine the
optimal routes for picking up and delivering passengers and parcels to achieve this maximum
revenue. The following basic assumptions are made for this problem:

(a) Passengers and parcel recipients submit their requests through the service platform.
Additionally, recipients must provide their scheduled routes or stops along with their submis-
sions. Parcel suppliers are also required to share their pickup locations with the platform.

(b) A vehicle cannot pick up or drop off parcels with passengers onboard.
(c) The parcel cannot be delivered to a candidate location if the recipient is unavailable,

whether the recipient have already moved on to the next stop or have not yet arrived at that
location.

(d) Each vehicle travels at a constant speed.

4. Mathematical model formulation

In this section, we present the mathematical model formulation for the share-a-ride problem
with parcels’ roaming delivery locations. We begin by introducing and clarifying the notation
used in the model. Following this, we define the objective function and outline a series of
constraints within the mathematical model, which collectively determine vehicle routes and
the allocation of vehicles to requests in an objective manner.
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4.1. Notations
The notations used in the model are listed in Table 1. The road network is represented as

a complete directed graph G(N,E) where N =M∪ (
⋃

k∈K k+) ∪ (
⋃

k∈K k−). All origins and
destinations of passenger and parcel requests are included in N . The shortest distance between
any two vertices can be pre-calculated, and it is assumed that the distance is symmetric.
For each vehicle, it has an initial point and a dummy point, which corresponds to the last
destination of the requests to be delivered. The model also incorporates various characteristics
of each vehicle, including maximum capacity for passengers, maximum size for luggage and
parcels, and average speed.

4.2. Static mathematical model
The mathematical model aims to maximize the total revenue of the platform charged from

travel fares of requests (including passenger and parcel requests) and determines the vehicle
routes based on the objective value.

Before introducing the model, we formally define the roaming delivery locations as follows.
We letMc− be the set of roaming delivery locations of the parcel request c, and each location
m ∈Mc− has a non-overlapping time window [ETm, LTm]. There exists a sequence of location
m1,m2, ...,mk ∈ Mc− based on time windows if the number of vertices in Mc− is k. Reyes
et al. (2017) assumed that the time period for serving requests was [0, T ] and let all roaming
delivery locations belonging to a same request form a circle, which means that m1 = mk.
Different from their assumption, we set a roaming route belonging to a recipient, which does
not require m1 = mk. Meanwhile, time windows of the vertices in Mc− satisfy:

ETm1 = 0 (4.1)
LTmk

= T (4.2)

ETmj = LTmj−1 +
Lmj−1,mj

V
, j = 2, ..., k (4.3)

4.2.1. Static formulation
Definition 4.1 (Static requests). Assuming that a vehicle fleet needs to serve a series of
passenger and parcel requests in the time period T = [t, t], these requests must be submitted to
platform in advance. All the requests submitted before the time point t are considered static
requests. This clarification facilitates the design of vehicle routes based on the information
available in advance, optimizing task assignment before service commencement.

Given a set of static requests, the arc-based model of the SARP-PRDL is formulated
as follows. This model incorporates several critical constraints, including capacity, arrival
time, and visiting sequence constraints, to ensure the feasibility and efficiency of the proposed
routing solutions.

Objective

max α(
∑
r∈R

pr +
∑
c∈C

pc) (4.4)

The maximum profit of platform is obtained based on the maximum travel fares paid by
passengers and parcel owners, and α is the percentage of commission drawn by platform from
travel fares (e.g., 20%). In this study, the travel fare pr paid by a passenger r is defined as
follows:

pr = βRLr

∑
k∈K

∑
v∈M

xkr+,v(y
k
r+ + γ(1− ykr+))

= γβRLr

∑
k∈K

∑
v∈M

xkr+,v + (1− γ)βRLr

∑
k∈K

∑
v∈M

xkr+,vy
k
r+ , (4.5)
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Table 1: Key parameters and variables

Indices and sets

R Set of passenger requests
C Set of parcel requests
Ro Set of origins of passenger requests in R
Rd Set of destinations of passenger requests in R
Co Set of origins of parcel requests in C
Cd Set of destinations of parcel requests in C
K Set of vehicles
E Set of edges in the graph
u Index of requests
k Index of vehicles
k+ Starting point of the vehicle k
k− Dummy point the vehicle k
r+ Origin of the passenger request r
r− Destination of the passenger request r
c+ Origin of the parcel request c

Mc− Set of roaming delivery locations of the parcel request c, c ∈ C, Mc− ⊆ Cd

M Set of origins and destinations of passenger requests and parcel requests, M = Ro∪Rd∪Co∪Cd

N Set of origins and destinations of passenger requests, parcel requests, and vehicles, N = M ∪
(
∪

k∈K k+) ∪ (
∪

k∈K k−)

Parameters and constants

α Percentage of commission drawn by platform from travel fares paid by passengers and parcel
owners

βR Travel fare for passengers per unit travel distance
βC Travel fare for parcel owners per unit travel distance
γ Fare discount percentage for passengers when taking a detour
Li,j Shortest travel distance from vertex i to vertex j
V Average speed of vehicles
ETj Earliest pickup time of the vertex j
LTj latest pickup time of the vertex j
LATu Latest arrival time of the request u
nu Number of passengers of request u
qu Size of luggage or parcel of request u
gj Service time at the vertex j, j ∈ M
Φk Maximum capacity of vehicle k for passengers
Ψk Maximum size of vehicle k for parcels
M A sufficiently large number

Decision variables

xk
i,j Equals 1 if vehicle k passes from vertex i to vertex j, and 0 otherwise

yk
r+ Equals 1 if vehicle k serves a passenger request r without detouring, and 0 otherwise

τk
j Departure time of vehicle k from vertex j

Ck
j Number of passengers on vehicle k after vehicle k departs from vertex j

Qk
j Size of luggage and parcels on vehicle k after vehicle k departs from vertex j

µj Visiting order of vertex j

Auxiliary variable

wk
r+,j Equals 1 if both xk

r+,j and yk
r+ are equal to 1, and 0 otherwise

where βR is the travel fare for passengers per unit travel distance, and Lr is the shortest travel
distance of the passenger request r between its origin and destination. This equation indicates
that a passenger will obtain the fare discount due to an inevitable detour if the passenger r
shares a ride with other passengers. But no discount will be applied to travel fares for parcel
requests, regardless of whether there exists a detour or not. Similarly, the travel fare pc paid
by a parcel owner c is:

pc =
∑
k∈K

∑
m∈Mc−

∑
v∈M\Mc−

βCLcmxkv,m, (4.6)
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where βC is the travel fare for parcel owners per unit travel distance, and Lcm is the shortest
travel distance of the parcel request c between its origin and roaming delivery location m. The
travel fare for a parcel request may vary depending on different roaming delivery locations.

Noted that our objective function is a nonlinear integer programming due to the equation
4.5, but it can be linearized by introducing an auxiliary variable wk

r+,v and some linearization
constraints. Here we add the following constraints:

wk
r+,v = xkr+,vy

k
r+ , ∀r ∈ R, v ∈M, k ∈ K (4.7)

wk
r+,v ≤ xkr+,v, ∀r ∈ R, v ∈M, k ∈ K (4.8)

wk
r+,v ≤ ykr+ , ∀r ∈ R, v ∈M, k ∈ K (4.9)

wk
r+,v ≥ xkr+,v + ykr+ − 1, ∀r ∈ R, v ∈M, k ∈ K (4.10)

xkr+,v, y
k
r+ , w

k
r+,v ∈ {0, 1} (4.11)

Then, our objective function can be rewritten as follows:

max α
[∑
r∈R

(
γβRLr

∑
k∈K

∑
v∈M

xkr+,v + (1− γ)βRLr

∑
k∈K

∑
v∈M

xkr+,vy
k
r+

)
+

∑
c∈C

∑
k∈K

∑
m∈Mc−

∑
v∈M\Mc−

βCLcmxkv,m

]
(4.12)

Constraints∑
k∈K

∑
v∈M

xku+,v ≤ 1, ∀u ∈ R ∪ C (4.13)∑
v∈M

xkk+,v = 1, ∀k ∈ K (4.14)∑
v∈M

xkv,k− = 1, ∀k ∈ K (4.15)∑
k∈K

∑
v∈M

xkk+,v =
∑
k∈K

∑
v∈M

xkv,k− = 1 (4.16)∑
v∈M

xkr+,v −
∑
v∈M

xkv,r− = 0, ∀r ∈ R, k ∈ K (4.17)∑
v∈M

xkc+,v −
∑

m∈Mc−

∑
v∈M\Mc−

xkv,m = 0, ∀c ∈ C, k ∈ K (4.18)

∑
v∈N

xki,v −
∑
v∈N

xkv,i = 0, ∀i ∈M, k ∈ K (4.19)∑
k∈K

∑
m∈Mc−

∑
v∈M\Mc−

xkv,m ≤ 1, ∀c ∈ C (4.20)

∑
v∈(Co∪Cd)

xkr+,v +
∑

v∈(Co∪Cd)

xkv,r− = 0, ∀r ∈ R, k ∈ K (4.21)

∑
v∈Rd

xkc+,v +
∑

m∈Mc−

∑
v∈M\(Rd∪{c+})

xkv,m = 0, ∀c ∈ C, k ∈ K (4.22)

µr+ − µv + 1 +M(
∑
k∈K

xkr+,v − 1) ≤ 0, ∀r ∈ R, v ∈ (Ro ∪Rd)\{r+} (4.23)

µv − µr− + 1 +M(
∑
k∈K

xkv,r− − 1) ≤ 0, ∀r ∈ R, v ∈ (Ro ∪Rd)\{r−} (4.24)

µc+ − µv + 1 +M(
∑
k∈K

xkc+,v − 1) ≤ 0, ∀c ∈ C, v ∈ Co ∪ Cd ∪Ro (4.25)
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µv − µm + 1 +M(
∑
k∈K

xkv,m − 1) ≤ 0, ∀m ∈Mc− , v ∈ Rd ∪ {c+|c+ ∈ Co} (4.26)

τkv ≥ τku+ +
Lu+,v

V
+ gv +M(xku+,v − 1), ∀k ∈ K, u ∈ R ∪ C, v ∈M (4.27)

τkr− ≥ τkv +
Lv,r−

V
+ gr− +M(xkv,r− − 1), ∀k ∈ K, r ∈ R, v ∈M (4.28)

τkm ≥ τkv +
Lv,m

V
+ gm +M(xkv,m − 1), ∀k ∈ K,m ∈Mc− , c ∈ C, v ∈M (4.29)

τkr+ − τkr− ≤ 0, ∀r ∈ R, k ∈ K (4.30)

τc+ − τm −M(1−
∑

v∈M\Mc−

xkv,m) ≤ 0, ∀m ∈Mc− , c ∈ C, k ∈ K (4.31)

ETu+

∑
v∈M

xku+,v ≤ τku+ ≤ LTu+

∑
v∈M

xku+,v, ∀u ∈ R ∪ C, k ∈ K (4.32)

τkr− ≤ LATr, ∀r ∈ R, k ∈ K (4.33)∑
m∈Mc−

ETm

∑
v∈M

xkm,v ≤ τkm ≤
∑

m∈Mc−

LTm

∑
v∈M

xkm,v, ∀m ∈Mc− , c ∈ C, k ∈ K (4.34)

Ck
u+ ≥ Ck

v + nu +M(xkv,u+ − 1), ∀v ∈M, u ∈ R ∪ C, k ∈ K (4.35)

Ck
r− ≥ Ck

v − nr +M(xkv,r− − 1), ∀v ∈M, r ∈ R, k ∈ K (4.36)

Ck
m ≥ Ck

v − nc +M(xkv,m − 1), ∀v ∈M,m ∈Mc− , c ∈ C, k ∈ K (4.37)
Qk

u+ ≥ Qk
v + qu +M(xkv,u+ − 1), ∀v ∈M, u ∈ R ∪ C, k ∈ K (4.38)

Qk
r− ≥ Qk

v − qr +M(xkv,r− − 1), ∀v ∈M, r ∈ R, k ∈ K (4.39)

Qk
m ≥ Qk

v − qc +M(xkv,m − 1), ∀v ∈M,m ∈Mc− , c ∈ C, k ∈ K (4.40)
Ck
v ≤ Φk, ∀v ∈M, k ∈ K (4.41)

Qk
v ≤ Ψk, ∀v ∈M, k ∈ K (4.42)∑

k∈K
ykr+ ≤ 1, ∀r ∈ R (4.43)

M(1− yr+) ≥ Ck
r+ − nr, ∀r ∈ R, k ∈ K (4.44)

−Myr+ ≤ Ck
r+ − nr, ∀r ∈ R, k ∈ K (4.45)

Constraints (4.13) guarantee that each request can be matched to at most one vehicle.
Constraints (4.14) - (4.16) enforce that each vehicle departs from its starting point and end
at its dummy point, and is not permitted to pass starting points or dummy points of other
vehicles. Constraints (4.17) and (4.18) ensure that the origin and destination of request u
should be visited by the same vehicle. Constraint (4.19) is the flow conservation constraint.
Constraint (4.20) requires that at most one roaming delivery location of the parcel request
c can be visited. Constraints (4.21) and (4.22) eliminate infeasible edges in the Graph G.
Constraints (4.23) - (4.26) determine the order in which vertices are visited and eliminate
closed loops of vehicle routes. Constraints (4.27) - (4.29) require that the vehicle k leaves a
vertex later than arriving at one. Constraints (4.30) and (4.31) ensures that the departure
time is later than the arrival time for all requests (including passenger requests and parcel
requests). Constraints (4.32) - (4.34) set the time window for each vertex belonging to the set
of requests. Constraints (4.35) - (4.37) determine the number of passengers in each vehicle
when the vehicle picks up or delivers at a vertex. Constraints (4.38) - (4.40) determine the
size of luggage and parcels in each vehicle when the vehicle picks up or delivers at a vertex.
Constraint (4.41) and Constraint (4.42) set limits on the number of passengers and the total
size of luggage or parcels that each vehicle can carry. Constraint (4.43) guarantees that there
is at most one vehicle picking up a passenger request r if the passenger has a trip without a
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detour. Constraints (4.44) and (4.45) indicate that there is only one passenger in the vehicle
if this passenger has a trip without any detour.

4.2.2. A simple computational example in Manhattan grid network
In this subsection, we employ a simplified road network to evaluate our arc-based model in

addressing the SARP-PRDL. The road network is structured as a 10 km × 10 km Manhattan
grid, with each edge representing a distance of 1 km. Drawing on a static illustrative instance
from Zhan et al. (2023), we utilize a subset of data generated randomly, which includes the
origins and destinations of passenger and parcel requests, the size of each parcel request,
the luggage size associated with each passenger request, and the starting locations of the
vehicles. Additionally, the roaming delivery locations for each parcel request are also generated
randomly. Given the nature of the proposed road network, the shortest distance between two
vertices is calculated using the Manhattan metric.
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Figure 4.1: Left: Manhattan grid network comprising 10 passenger requests, 5 parcel requests, and 6
vehicles; Right: the optimal routes of solving instance using Gurobi.

Figure 4.1 on the left depicts our designed network comprising 10 passenger requests, 5
parcel requests, and 6 vehicles, corresponding to the instance “P10-G5-V6” in the Table 2.
In this instance, each parcel request has at least 2 roaming delivery locations. Dashed blue
lines are used to connect roaming delivery locations of each parcel in the Figure 4.1. It should
be noted that the dashed blue line does not represent the actual moving route. Rather, it
just depicts the sequence of movement at the roaming delivery locations. This small instance
can be solved by Gurobi solver 10.0.0 and Figure 4.1 on the right depicts optimal routes of 6
vehicles. In this optimal solution, passenger request 10 is not served due to time constraints.

Then, we use the Gurobi solver to test the model on a set of randomly generated instances,
as shown in Table 2. The small-scale instances are denoted by names in the format of “Px-
Gy-Vz”, where “x” represents the number of passenger requests, “y” indicates the number of
parcel requests, and “z” denotes the number of vehicles. Table 2 demonstrates that the Gurobi
solver efficiently finds the optimal solution in all small-scale instances with 5 parcel requests.
However, as the number of parcel requests increases to 10, the solver fails to find an optimal
solution within 7,200 seconds. This inefficiency is attributed to the exponential increase in the
number of vertices, resulting from the roaming delivery locations associated with each parcel
request.
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Table 2: Computational results in small-scale instances by using Gurobi

Instances NoV Gurobi
Incumbent Time(s) Gap(%)

P5-G5-V6 30+12 31.6 0.6 0
P10-G5-V6 40+12 42.3 208 0
P10-G10-V6 58+12 49.6 >7200 19.15
P15-G5-V6 50+12 59.2 >7200 12.16
P15-G10-V6 68+12 64 >7200 32.2

P5-G5-V10 30+20 31.6 0.2 0
P10-G5-V10 40+20 43.6 1.7 0
P10-G10-V10 58+20 58.8 >7200 1.36
P15-G5-V10 50+20 68.6 8.7 0
P15-G10-V10 68+20 77.4 >7200 9.30

Notes:
NoV: the number of vertices in the graph, as denoted in the format of “A+B". A: the number of vertices consist of
passenger and parcel requests. B: the number of vertices consist of vehicle starting points and dummy ending points.

4.2.3. A path-based formulation
Similar to the path-based formulation for VRP, SARP-PRDL can also be viewed as finding

a set of optimal routes for vehicles to serve both passengers and parcels, except that not all
vertices need to be visited. Therefore, the arc-based model for SARP-PDRL can be reformu-
lated as a set-packing model by the Dantzig-Wolfe decomposition technique (Alidaee et al.,
2008). This reformulation decomposes the original model into a master problem and a series
of subproblems. Each subproblem identifies a promising route for a vehicle, while the master
problem selects the optimal combination of these routes.

We let S denote the set of vehicle routes, and ϑs denote a binary variable indicating
whether the route s ∈ S is selected. Here, additional parameters in the master problem are
given as follows:

• ϱv,s ∈ {0, 1}: 1 if the route s belonging to a vehicle visits the vertex v; 0 otherwise.

• ωs: total travel fares paid by passengers and parcel owners on this route s, including
basic travel fares without a detour for passengers, discounted travel fares with a detour
for passengers and original travel fares for parcel owners.

The SARP-PRDL model can be rewritten as the following set packing model.

max
∑
s∈S

ωsϑs (4.46)

subject to:

∑
s∈S

ϱi,sϑs ≤ 1, ∀i ∈M (4.47)∑
s∈S

ϱk+,sϑs = 1, ∀k ∈ K (4.48)∑
s∈S

ϱk−,sϑs = 1, ∀k ∈ K (4.49)

ϑs ∈ {0, 1}, ∀s ∈ S (4.50)

The objective function (4.46) maximizes the total travel fares. Constraint (4.47) requires
that each request is served at most one route. Constraints (4.48) and (4.49) ensures that each
vehicle serves a route from its own starting point and dummy point. Constraint (4.50) defines
the domain of decision variables.
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4.2.4. Restricted master problem
The number of feasible columns is exponential, making it impractical to enumerate all

possible columns when the set of vertices is extensive. Thus, focusing on the subset S ′ ⊂ S
proves to be an effective approach for solving the restricted master problems iteratively. The
restricted master problem (RMP) can be formulated as follows:

max
∑
s∈S′

ωsϑs (4.51)∑
s∈S′

ϱi,sϑs ≤ 1, ∀i ∈M · · · · · · πi (4.52)∑
s∈S′

ϱk+,sϑs = 1, ∀k ∈ K · · · · · · λk+ (4.53)∑
s∈S′

ϱk−,sϑs = 1, ∀k ∈ K · · · · · · λk− (4.54)

0 ≤ ϑs ≤ 1, ∀s ∈ S ′, (4.55)

where the decision variable ϑs is relaxed to a continuous variable between 0 and 1.

4.3. Dynamic mathematical model
After a set of routes serving static passenger and parcel requests have been scheduled, the

vehicle fleet will start service at the beginning of working hours. For those unmatched static
requests, we do not consider scheduling them in the dynamic request scheduling because these
passengers and shippers/recipients may change their travel or delivery plan. Generally, these
pre-designed routes are expected to remain unchanged during working hours, and drivers are
required to follow the planned routes. However, in practice, new requests may be submitted
to the service platform while the vehicle fleet is already en-route. If feasible, these dynamic re-
quests can be accommodated by the existing fleet, provided that suitable vehicles are available
to service them. Consequently, modifying the planned routes of vehicles for static requests
can enhance the platform’s revenue by accommodating new requests.

4.3.1. Constructing and processing the extended subgraph
We divide the whole time period into multiple discrete time cycles, and an extended

subgraph is developed to identify potential insertion for dynamically submitted passenger and
parcel requests in each cycle.

Definition 4.2 (Dynamic requests). All passenger and parcel requests submitted during the
vehicle service time T = [t, t] are classified as dynamic requests.

In time cycle t ⊂ T , let Nf
kt be the static requests’ vertices set that vehicle k has visited

in this cycle. Let Ef
kt be the edge set that vehicle k has traversed or is traversing. Let

Nt be the vertices set of dynamic requests in the time cycle t. If we denote Ro
t ,R

d
t ,C

o
t ,C

d
t

as the set of dynamic passenger requests’ origins, the set of dynamic passenger requests’
destinations, the set of dynamic parcel requests’ pick-up locations, and the set of dynamic
parcel requests’ roaming delivery locations, then the vertices set of dynamic requests satisfies
Nt = Ro

t ∪ Rd
t ∪ Co

t ∪ Cd
t . Let Et = {(i, j)|∀i ∈ Nt, j ∈ N, i ̸= j} be the edges set containing

edges between dynamic requests’ vertices in Nt and existed vertices in N .
In the constraint (4.47), not all static requests can be served by a fixed vehicle fleet. When

dynamic requests begin to enter the service platform, we do not consider vertices and edges
corresponding to unmatched static requests in each time cycle. Let Nu

0 be the vertices set of
unmatched static requests. Then an extended subgraph (Nt, Et) in the time cycle t can be
created as follows:

Nt = (Nt−1\
⋃
k∈K

Nf
kt) ∪Nt, t = 1, 2, ..., n (4.56)
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Et = (Et−1\
⋃
k∈K

Ef
kt) ∪ Et, t = 1, 2, ..., n (4.57)

N0 = N\Nu
0 , E0 = E\ {(i, j)|∀i ∈ Nu

0 , j ∈ N, i ̸= j} (4.58)

We may still use the simple example shown in Figure 3.1 to describe the process of gen-
erating extended subgraph. Figure 4.2 on the left depicts current locations of two service
vehicles at the time point t. On this moment, driver 1 and 2 are heading to pick up passenger
1 and 3 respectively. Meanwhile, a dynamic parcel request “G2” enters in the platform at the
time point t, waiting for being assigned to a potential vehicle. Figure 4.2 on the right depicts
an extended subgraph after “G2” enters. For simplicity, the figure just depicts partial edges
while the actual number of edges is much higher in this extended subgraph. Additionally, the
vertex “G1” and edge “(G1, P1)” are also eliminated as the vehicle 1 has visited this vertex
and edge.

Origin of passenger request Destination of passenger request Roaming deliveries of parcel requestPickup of parcel request

G1

P1

P2

P2

P3

P3

P1

G1-1

G1-2

G1-3

Recipient 1

P1

P1

P2 P3

P3

G1-1 G1-2 G1-3 G2-2G2-1

G2

Driver 2

Vehicle route 1

Vehicle route 2

Recipient’s roaming route

Vehicle routes at time point t Extended subgraph at time point t (depicting partial edges)

P2

G2

G2-1

G2-2

Recipient 2

Picked up

New request

Figure 4.2: Left: Vehicle routes and current locations at time point t; Right: Extended subgraph with the
introduction of dynamic parcel request G2.

4.3.2. Formulating periodic RMP
In each time cycle t, we need to develop a new master problem for dynamic requests.

Obviously, we can use each route s for which ϑs = 1 in the previous problem, and reoptimize
the as-yet unexecuted parts of routes to find potential insertion for dynamic requests. Let sf
be the unexecuted part of route s, ωsf be the travel fare of route sf , then we have ωsf ≤ ωs.
In this new set of master problems, we focus on the subset S ′f consisting of routes that vehicles
are about to execute. Then, the RMP in the time cycle t can be formulated as follows:

max
∑

sf∈S′
f

ωsfϑsf (4.59)

∑
sf∈S′

f

ϱi,sfϑsf = 1, ∀i ∈ N\Nu
0 ∪

{
k−|∀k ∈ K

}
(4.60)

∑
sf∈S′

f

ϱi,sfϑsf ≤ 1, ∀i ∈ Nt (4.61)

0 ≤ ϑsf ≤ 1, ∀sf ∈ S ′f (4.62)
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Constraints (4.60) guarantee all static requests matched successfully should be served by
vehicles, and vehicles must visit their dummy ending points. Constraints (4.61) require that
each dynamic request is served no more than once.

5. Solution approach

As mentioned in Section 4, the SARPRDL could be converted into an equivalent MILP
by linearization technique though it was originally formulated as an MINLP. The MILP could
be easily solved by off-the-shelf solvers (e.g., Gurobi) in the small-scale instances. However,
using the off-the-shelf solvers for instances with medium number of passengers and parcel re-
quests could be time-consuming. Thats mainly due to exponential number of integer variables
and big-M constraints. To obtain a high-quality solution for static and dynamic problems
efficiently, we design a solution approach based on branch-and-price framework. Meanwhile,
the adaptive large neighborhood search algorithm is used to evaluate our test results in the
static instances.

5.1. The overview of branch-and-price matheuristic approach
The branch-and-price matheuristic approach employs the solution framework of the branch-

and-price algorithm. The distinction lies in the methodology employed to address the pricing
subproblem. In our approach, exact solutions are not a prerequisite in both static and dynamic
path-based models, given the potential for vehicle routes to be rescheduled in accordance with
time cycles that are continuously rolling. Consequently, we have opted to use a heuristic pric-
ing strategy to resolve the subproblem until the termination procedure of column generation
in the subproblem is activated. The flow chart of our BPM algorithm is illustrated in Figure
5.1.
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Column-generation heuristic algorithm

end

Select and remove a node   

from Q, and set  

Solve the RMP

Calculate the value of dual 

variables

Generate a column in the 

SP by a heuristic strategy

Check this column and find 

a best vehicle for it

Add new 

column to RMP

Resolve the RMP and get 

the final solution

Step into

Return

Yes

Yes

Yes

No

No

No

Figure 5.1: Flow chart of the BPM approach.

5.2. Pricing subproblem
In the pricing subproblem, we calculate the reduced cost of each route generated by pricing

strategy. Let πi, λk+ , λk− denote dual variables corresponding to constraints (4.52), (4.53) and
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(4.54) of static RMP. Then, for a vehicle k, the reduced cost of the route s can be calculated
as follows.

ω̃sk = ωs −
∑
i∈M

ϱi,sπi − ϱk+,sλk+ − ϱk−,sλk− (5.1)

To find a promising route, the connection between the pricing subproblem and arc-based
model is needed. For each vehicle, we let xi,j denote whether the arc (i, j) is traversed by this
vehicle. The route s’s travel fare ωs can be expressed using the variable xi,j .

ωs =
∑
r∈R

∑
v∈M

δr+xr+,v +
∑
c∈C

∑
m∈Mc−

∑
v∈M\Mc−

δc−xv,m (5.2)

Here, δr+ = βRLr(yr++γ(1−yr+)), δc− = βCLcm. Based on the information above, we aim
to find a column with the most positive reduced cost (s∗, k∗) = argmax {ω̃sk|ω̃sk > 0, k ∈ K},
which is conducive to improving the objective value in the static RMP model.

As for the periodic RMP, we also calculate the reduced cost based on the route sf ’s travel
fare and dual variables.

ω̃sfk = ωsf −
∑

i∈(N\Nu
0 )∪Nt

ϱi,sfπi − ϱk−,sfλk− (5.3)

5.3. Heuristic pricing approach for subproblem
By the route costs and dual values obtained from the restricted master problem, we can

generate a promising column in the pricing problem for the master problem. In the static
problem, an entire route from vehicle’s initial location to its dummy ending point is gener-
ated, whereas a subroute from a vehicles current location to vehicle’s dummy ending point is
generated in the dynamic problem.

(1) Column generation in static model
In the static model (4.51), we generate a promising column with maximum positive re-

duced cost to increase the objective value. Each column should be an complete route from
a starting point to an ending point. In each loop, we decide to insert a request with the
maximum difference between the travel fare of request and the sum of dual variables of re-
quest. Additionally, the feasibility of each generated column must be verified by the proposed
algorithm.

We use a simple example depicted in Figure 5.2 to illustrate the insertion process. The
vertex “P(G)-o-x” denotes the vertex of origin of the passenger (parcel) request “x”. Similarly,
the designation “P-d-x” signifies the destination of the passenger request “x”, while “G-d-x-1”
denotes the first candidate delivery location of the parcel request “x”. It is assumed that the
service times for the passenger and parcel vertices are zero and one minute, respectively. The
entire time span is given by the interval [0, 70]. Route 1 is a provisional route derived by the
Algorithm 2 following the insertion of two requests, with the numbers indicating travel times
between vertices. A further request insertion will be explored based on this route. Before
inserting a new request, the total travel time is 38 minutes. It is possible to incorporate a
new request into this route without violating time constraint. Parcel request 2 is selected
for insertion into route 1. However, route 2 is deemed infeasible due to the infeasible edge
(“P-o-1”, “G-o-2”) that prohibits the vehicle from picking up a parcel when a passenger is
onboard. Nevertheless, modifying the sequence of “G-o-2” and “P-d-1” generates Route 3, a
new feasible route. Furthermore, the time constraints can be met post-insertion.

(2) Column generation in dynamic model
When it comes to insert dynamic requests into off-the-shelf vehicle routes based on the

static solution, we can only reoptimize the as-yet unexecuted parts of vehicle routes. Take
the route 1 in Figure 5.2 as example, if vehicle is traversing the edge (“G-o-1”, “P-o-1”), then
we will only reoptimize the partial route after vertex “P-O-1” under the premise of not losing
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P-d-1 [13, 41] 33 33

G-d-1-1 [24, 40] 37 38

Ending point [0, 70] 38 38
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Figure 5.2: An illustrative example when inserting a new request.

vertex “G-d-1-1”. Therefore, we generate a new route starting from vertex “P-o-1”, and this
new partial route can be combined with the executed part to form a new entire route.

We can summarize the process of heuristic pricing approach in Algorithm 1.

Algorithm 1: Generating a promising column in subproblem
Input: RMP model, set of passenger requests R, set of parcel requests C, set of origins of

passenger requests Ro, set of destinations of passenger requests Rd, set of origins of
parcel requests Co, set of roaming deliveries of parcel requests Cd

Output: A column with maximum reduced cost ω̃s

Solve the RMP model and obtain the dual variables;
if an entire route should be generated in the static problem then

Initialize an empty route s;
ω̃s, s = HeuristicPricing(s,R, C,Ro,Rd, Co, Cd);

if a unexecuted route should be generated in the dynamic problem then
Let se = [i1, i2, ..., ik] be a sequence of vertices, where ik is the vertex towards which the
vehicle is heading;

Initialize s← [ik+1];
if there is a pick-up vertex ip in the sequence se but corresponding drop-off vertex id is not
included in se then

Add vertex id into s;
ω̃s, s = HeuristicPricing(s,R, C,Ro,Rd, Co, Cd);
Merging se and s to form a complete route;

5.4. Branching strategy
Each time the CG algorithm is activated, a linear relaxation of the RMP model is solved,

which may result in a non-integer solution. To achieve an integer solution, it is necessary to
develop a branch-and-bound tree. Our branching strategy employs a rule that branches on
the arc flow variables associated with the graph G. Upon discovering a fractional solution at
a node of the branch-and-bound tree, two child nodes may be generated from it. Regarding
the search rule in the branch-and-bound tree, we utilize best-first search to efficiently explore
and prune branches that can be cut off.
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Algorithm 2: HeuristicPricing(s,R, C,Ro,Rd, Co, Cd)
Initialize maximum reduced cost of route ω̃max ← 0;
while True do

Initialize the best request for insertion ξ ← None, the best objective increase
∆obj

max ← 0, the best record of route and reduced cost
(sbest, ω̃best)← (None,None);

Calculate route s’s reduced cost ω̃s;
for ξ ∈ R ∪ C do

Let new route’s reduced cost ω̃∗
s = 0, the set of feasible routes F = ∅;

if ξ is a passenger request then
Find the origin ξ+ ∈ Ro, and the destination ξ− ∈ Rd;
for ip ∈ {1, 2, ..., |s|} do

Insert ξ+ into route s at the index ip, generating a new route s1;
if Time, capacity and infeasible edge constraints satisfy then

for id ∈ {ip + 1, ip + 2, ..., |s|+ 1} do
Insert ξ− into s1 at the index id, generating a new route s2;
if Time, capacity and infeasible edge constraints satisfy then

Calculate the reduced cost of route s2; F ← F ∪ {s2};

if ξ is a parcel request then
Find the pickup ξ+ ∈ Co, and roaming deliveries Mξ− ⊂ Cd;
for ip ∈ {1, 2, ..., |s|} do

Insert ξ+ into route s at the index ip, generating a new route s1;
if Time, capacity and infeasible edge constraints satisfy then

for id ∈ {ip + 1, ip + 2, ..., |s|+ 1} do
for m ∈Mξ− do

Insert ξ− into s1 at the index id, generating a new route s2;
if Time, capacity and infeasible edge constraints satisfy then

Calculate the reduced cost of route s2; F ← F ∪ {s2};

Find all feasible routes in F and obtain a route s∗ with maximum reduced cost
ω̃∗
s = max {ω̃s|ω̃s > 0, s ∈ F};

Calculate objective change ∆s∗ = ω̃s∗ − ω̃s;
if ∆s∗ > ∆obj

max then
ξbest ← ξ; ∆obj

max ← ∆s∗ ; (sbest, ω̃best)← (s∗, ω̃∗
s);

if ξbest is not None then
if ξ ∈ R then
R← R\{ξbest};

if ξ ∈ C then
C ← C\{ξbest};

ω̃max ← ω̃best; s← sbest;
else

Break the loop;

Return ω̃max, s
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Initially, for the node with a fractional solution, we need to compute the values of each arc
flow variables according to the following equation:

xi,j =
∑

s∈S′,(i,j)∈s

ϑs (5.4)

where ϑs is the linear relaxation solution of the RMP.
Subsequently, we choose a branching arc based on the arc variable closest to 0.5, as de-

termined by equation (iq, iq+1) = argmin(i,j)∈E{|xi,j − 0.5|}, and generate two child nodes,
referred to as the left and right child nodes, respectively. We impose the branching constraint
(5.5) to left child node and the branching constraint (5.6) to right child node.∑

s∈S′,(iq ,iq+1)∈s

ϑs = 0 (5.5)

∑
s∈S′,(iq ,iq+1)∈s

ϑs = 1 (5.6)

Consequently, the left child node will prohibit the route traversing the arc (iq, iq+1), while
another node must enforce at least one route passing through the arc (iq, iq+1).

6. Computational experiments

To evaluate the performance of our proposed solution approach, we conduct computational
experiments based on a real-world case study. All the computational results reported below
are based on a Microsoft Windows 10 with Intel Core i9 - 3.60GHz and 16GB RAM, using
Python 3.10 and Gurobi 10.0.0. The maximum running time of the Gurobi is 3600s, and
We also use ALNS algorithm (see Appendix A) to evaluate our proposed matheuristic. The
maximum number of iterations of the ALNS algorithm is 2000. Furthermore, we let ALNS
algorithm terminate if the best solution remains constant after 300 iterations. The values of
critical parameters in the mathematical model and the ALNS algorithm are listed in Table 3
and 4.

Table 3: Values of main input parameters in the model

Parameter Value

Travel fare per kilometer for passengers βR 2.5
Travel fare per kilometer for parcels βC 2
Fare discount coefficient for passengers when taking a detour γ 0.8
Average speed of vehicles V (km/h) 30
Service time for passengers/parcels at any vertex g (minute) 0/1
Number of passenger seats in the vehicle 4
Maximum size for pieces of luggage or parcels in the vehicle 10

Table 4: Values of main parameters in the ALNS algorithm

Parameter Value

Maximum number of iterations 2000
The ratio of requests removed 0.2
Initial temperature 100
Lowest temperature 10
Linear cooling rate 0.01
Score of the operators [40, 20, 5, 1]
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6.1. Experiment settings
We use a partial road network of Chengdu city, China, for numerical experiment of the

proposed model. In this road network, a taxi company offers both passenger delivery services
and expedited parcel delivery. The passenger/parcel delivery data are extracted from real taxi
trip data records collected during the peak hour of the study area, which spans from 8:00 to
9:00 on 1 August 2021.

To establish a baseline for the experimental study, the proportion of passenger requests
is initially set at 75%, with parcel requests comprising the remaining 25%. Approximately
50% of the parcel requests have a fixed delivery location, while the other 50% require delivery
according to the roaming routes of recipients, which are generated randomly within a one-hour
period. The initial locations of the vehicles are uniformly distributed across the road network.
The generated dataset is then divided into two distinct subsets: a static requests set and a
dynamic requests set. Following the approach outlined by Lund et al. (1996), we introduce
the concept of the degree of dynamism (DoD) to differentiate between these sets. The DoD is
defined as δ = nd

ns+nd
∈ [0, 1], where the dynamism of an instance increases with the number

of dynamic requests nd and decrease with the number of static requests ns. The initial value
of the DoD is set to approximately 50%. In other words, the number of dynamic requests is
approximately equal to that of static requests.

The time span for the experiment is set to one hour, covering the interval[0, 60]. The dura-
tion of each time cycle is set to 5 minutes, resulting in 12 time cycles in total. Each time cycle
lasts 5 minutes, resulting in a total of 12 time cycles. In our experimental study, we randomly
generate the submission times for dynamic parcel requests and dynamic passenger requests
within the intervals [0, 20] and [0, 40], respectively. The requirement for parcel requests to be
submitted at least 20 minutes in advance serves two purposes: (i) the time sensitivity of parcel
pickups and deliveries is lower than that of passenger requests, and (ii) vehicles cannot perform
parcel pick-up and delivery services while servicing passengers. By submitting parcel requests
early, vehicles can collect more packages before picking up passengers, thereby allowing them
to fulfill a greater number of parcel delivery requests. After generating the submission times,
we will define the time windows and latest arrival times for each dynamic request.

6.2. The test performance on static requests scheduling
6.2.1. Small-scale test performance

Six small-sized instances were generated for testing the proposed matheuristic algorithm.
Table 5 shows the results obtained by Gurobi, ALNS and the BP matheuristic, respectively.
We denote Nr as the number of static requests, which includes both passenger and parcel
requests. The set of vehicle fleets, denoted by V T , contains various numbers of vehicles.
Specifically, we let the lengths of sets V T s

1 , V T s
2 and V T s

3 to be 5, 8 and 10, respectively. For
each fixed instance and vehicle fleet, we run each heuristic algorithm five times and record
the best and average results. To evaluate the performance of the heuristic algorithms, we
calculate ∆gap = |Πbest−Π∗|

Π∗ , which measures the gap between the approximate solution from
the heuristic algorithm and the incumbent solution from Gurobi.

Table 5 shows that Gurobi is only able to efficiently solve instances within a limited range.
The ALNS algorithm effectively reduces the total computation time for test instances that
Gurobi could hardly solve. Furthermore, the proposed matheuristic algorithm can quickly
solve all static instances, yielding high-quality solutions. When applying the matheuristic,
approximately 70 percent of instances achieve the same best solution as Gurobi, and each
instance is solved faster than with the ALNS algorithm. As the number of static requests
increases to 20, Gurobi can find a dominant incumbent solution through time-consuming
computation. In contrast, our matheuristic rapidly obtains an approximate optimal solution
with a minor gap of ∆gap < 3%. For Instance 4 with the vehicle fleet V T s

1 , the matheuristic
produces a solution with a gap of ∆gap = 3.4%, which is consistent with the result calculated
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in Instance 3 with the vehicle fleet V T s
1 . This local optimality may arise when BP matheuristic

searches for promising columns in the pricing subproblem.

Table 5: Computational results in small-scale instances

Instance Nr V T
Gurobi ALNS BP matheuristic

Π∗ time(s) Gap Πbest
1 Πavg

1 time(s) ∆1
gap Πbest

2 Πavg
2 time(s) ∆2

gap

1 10
V T s

1 23.97 0.43 0 23.97 23.97 6.24 0 23.97 23.97 1.09 0
V T s

2 34.49 0.76 0 34.49 34.49 5.17 0 34.49 33.46 1.97 0
V T s

3 37.14 1.09 0 37.14 37.14 5.31 0 37.14 36.45 1.79 0

2 12
V T s

1 26.86 4.18 0 26.86 26.86 10.15 0 26.86 26.86 1.29 0
V T s

2 39.16 5.01 0 39.16 39.16 8.48 0 39.16 38.78 3.86 0
V T s

3 41.93 2.14 0 41.93 41.93 8.41 0 41.93 41.9 3.14 0

3 14
V T s

1 29.41 9.16 0 28.92 28.92 11.09 1.7 28.92 28.92 3.76 1.7
V T s

2 47.1 42.7 0 47.1 45.78 12.25 0 47.1 46.85 5.28 0
V T s

3 53.26 20.73 0 53.26 52.97 9.64 0 53.26 52.60 6.11 0

4 16
V T s

1 29.93 26.74 0 29.82 29.14 22.87 0.4 28.92 28.92 5.14 3.4
V T s

2 50.67 1293.42 0 50.53 49.92 30.51 0.3 50.67 50.44 8.19 0
V T s

3 58.57 >3600 0.2 58.57 58.28 30.46 0 58.57 58.07 6.56 0

5 18
V T s

1 33.28 730.53 0 33.28 32.2 49.61 0 33.28 32.4 8.02 0
V T s

2 56.35 >3600 12.5 56.35 55.95 43.34 0 56.35 55.87 15.68 0
V T s

3 65.54 >3600 2.7 65.54 62.72 33.98 0 65.54 65.04 13.59 0

6 20
V T s

1 35.69 879.87 0 34.58 33.60 96.73 3.1 34.81 34.52 11.77 2.5
V T s

2 61.35 >3600 17.7 60.25 59.51 91.34 1.8 60.54 59.95 16.75 1.3
V T s

3 71.75 >3600 4.4 69.8 68.7 96.36 2.7 70.94 69.29 16.33 1.1

6.2.2. Large-scale test performance
In the context of large-scale test instances, the Gurobi solver is no longer employed for cal-

culating solutions, due to its inefficiency to find the optimum. The number of static requests
varies from 30 to 60, with vehicle fleets V T l

1 of 20 vehicles and V T l
2 of 40 vehicles employed

to serve passenger and parcel requests. For each instance, we conduct at least 5 repeated
computations and record the best objective value and the average value. The experimental
results are summarized in Table 6. It is observed that the computation time increases sig-
nificantly as the number of requests grows. Additionally, the data results demonstrate that
our proposed BP matheuristic algorithm achieves better solutions with reduced computing
time. Notably, increasing the number of vehicles improves the objective value and shortens
computing time. This enhancement occurs because new promising columns can be generated
in the pricing subproblem, and thereby accelerating convergence. However, the use of the
ALNS algorithm to solve instances is exceedingly time-consuming. This may be attributed to
the large number of vertices generated by requests and the substantial time spent on removal
and repair operators in each iteration.

6.3. Experimental study on dynamic requests scheduling
Once the final result of static requests scheduling has been determined, dynamic requests

can be scheduled based on the as-yet unexecuted parts of vehicle routes. In the context
of dynamic requests scheduling, two schemes are proposed for scheduling dynamic requests.
Scheme I involves re-optimizing vehicle routes for dynamic requests, as detailed in Section
4.3. In contrast, Scheme II adopts a greedy heuristic approach, focusing on inserting as many
requests as possible without replanning the existing routes (see Appendix B).

Table 7 presents the computational results for scheduling dynamic requests using both
Scheme I and Scheme II. In this table, we let m be the number of total requests, including
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Table 6: Computational results in large-scale instances

Instance Nr V T
ALNS BP matheuristic

Πbest
1 Πavg

1 time(s) Πbest
2 Πavg

2 time(s)

1 30 V T l
1 118.92 117.27 906.2 118.92 117.58 171.7

V T l
2 120.3 119.92 805.1 120.3 119.99 63.1

2 40 V T l
1 156.03 154.29 5024.6 156.87 154.15 2821.8

V T l
2 162.41 162.22 2527.6 162.41 162.17 241.6

3 50 V T l
1 172.83 168.44 14902.5 176.02 173.79 8797.8

V T l
2 193.77 193.66 11807.2 194.25 193.9 1443.1

4 60 V T l
1 189.99 183.4 35125.4 195.26 192.51 8852.6

V T l
2 232.12 231.14 23261.2 232.6 232.36 5038.2

both static and dynamic requests; ns be the number of static requests; nd be the number of
dynamic requests; NV T be the number of vehicles in the fleet. For static request experiments,
the table reports the objective value Π1, the completion rate of static requests σs and the
number of vehicles not in use ñs. In dynamic requests experiments, the table reports the
objective value, denoted as Πw

2 for Scheme I and Πwo
2 )for Scheme II, and the completion rate

of dynamic requests σd. The values Πw
2 and Πwo

2 ) are calculated as the sum of Π1 and the
profit generated from dynamic requests.

Table 7 shows that when the vehicle fleet has limited time and capacity available after
scheduling static requests, only a small portion of dynamic requests can be accommodated. In
such cases, Scheme I generally achieves higher total revenue and completion rates than Scheme
II. For example, when m=20 or 40 and NV T = 10, Scheme I generates higher total revenue
while maintaining the same completion rates for dynamic requests as Scheme II. When m=60
or 80 and NV T = 20, Scheme I continues to demonstrate slight improvements in both total
revenue and dynamic request completion rates compared to Scheme II. This can be attributed
to two main factors: (i) Scheme I utilizes route reoptimization to reassign certain requests
to other vehicles, thereby freeing up service time for high-revenue dynamic requests; and (ii)
Scheme II employs a greedy insertion strategy that, although it accommodates requests in
earlier iterations, may overlook opportunities to serve high-revenue dynamic orders in later
iterations.

However, the advantages of Scheme I diminish when there are a large number of unused
vehicles in the fleet after scheduling static requests. In these situations, the route reoptimiza-
tion strategy of Scheme I becomes less effective compared to the greedy insertion strategy of
Scheme II. For example, when m=20 and NV T=20, or m=80 and NV T=30, both schemes yield
identical results. When m=60 and NV T=30, Scheme I results in lower completion rate com-
pared to Scheme II. There are two main reasons for this phenomenon, (i) the unused vehicles,
instead of occupied vehicle, are assigned to serve the dynamic requests, and (ii) most of the
vehicle routes still have sufficient time available to insert dynamic requests. Both decrease the
importance of reoptimizing the routes for occupied vehicles. These factors reduce the impor-
tance of reoptimizing routes for occupied vehicles. Instead, the reoptimization strategy tends
to continuously reorder unexecuted requests to free up service time for high-revenue requests,
which can lead to longer travel distances and less flexible time for inserting new requests.
While Scheme II may complete more tasks, the revenue generated may not be comparable.
For instance, with m=60 and NV T=30 for example, Scheme II completes 13.8% more dynamic
requests than Scheme I, but the total revenue only increases by 174.46−171.24

171.24 ≈ 1.9%. This
suggests that Scheme II often inserts a larger number of low-revenue dynamic requests.
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Table 7: Computational results with (Scheme I) and (Scheme II)

m ns nd NV T
Static result Scheme I Scheme II

Π1 σs ñs Πw
2 σd Πwo

2 σd

20 11 9 10 39.26 90.9% 0 43.66 22.2% 42.54 22.2%
20 42.86 100% 11 74.66 100% 74.66 100%

40 20 20 10 71.79 80% 0 74.23 5% 72.91 5%
20 83.05 100% 4 113.25 40% 111.97 40%

60 31 29 20 117.88 100% 0 137.36 17.2% 128.06 13.8%
30 119.93 100% 9 171.24 37.9% 174.46 51.7%

80 40 40 20 156.87 100% 0 169.09 10% 161.11 5%
30 161.4 100% 1 196.0 25% 196.0 25%

100 51 49 20 177.21 92.2% 0 182.73 4.1% 182.73 4.1%
30 192.4 100% 0 223.22 20.4% 214.95 16.3%

6.4. The effect of varying DoD on revenue
In the preceding experiments, the DoD is set to δ ≈ 50%, resulting in an approximately

equal number of static and dynamic requests. We may examine the effect on revenue under the
conditions that δ ≈ 30% and δ ≈ 70%. We use the instances with requests varying from 20 to
100, while keeping the total number of vehicles fixed at 20. When δ ≈ 50%, the computational
results may refer to Table 7. The overall revenue Π from serving both static and dynamic
requests is defined as the maximum of objective values obtained from Scheme I and Scheme
II, expressed as Π = max{Πw

2 ,Π
wo
2 }.

Figure 6.1: The total revenue of serving requests under different degrees of dynamism.

Figure 6.1 compares the revenue generated from servicing passenger and parcel requests
under various of DoDs. Overall, when the DoD is at 30% or 50%, the revenue shows a steadily
increasing trend, whereas at 70%, the revenue initially increases but eventually stabilizes.
When the total number of requests is 20, the vehicle supply is sufficient to fulfill all requests,
leading to consistent revenue across all levels of dynamism, with Π = 74.66. At a total request
count of 40, the revenue at 70% DoD reaches 134.54, slightly larger than that of 30% DoD
and significantly exceeding the revenue at 50% DoD. This is likely because, under a 70%
DoD, after scheduling static requests, a larger number of vehicles remain unused, allowing
for the servicing of more dynamic requests in subsequent operations. However, when the
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total number of requests exceeds 40, vehicle supply falls short of demand. In this scenario, a
lower DoD yields higher revenue, while a higher DoD results in lower revenue. This decline
in revenue at higher DoD may be attributed to early-inserted dynamic requests consuming
available vehicle service time, thereby preventing later-arriving high-revenue dynamic requests
from being added to existing routes.

We also recorded the completion numbers for both types of requests, corresponding to
the results in Figure 6.1. Figure 6.2 shows that under low DoD, the vehicle fleet primarily
serves static requests, resulting in only a small number of dynamic requests being fulfilled.
Consequently, prioritizing static requests contributes to higher overall revenue. In contrast,
under high DoD, dynamic requests are more likely to be affected by the pre-scheduled routes
for static requests. This is especially true when early-assigned low-revenue dynamic requests
occupy service capacity, preventing later-arriving high-revenue requests from being accommo-
dated. Therefore, when vehicle supply cannot meet demand, it is advantageous for enhancing
revenue to serve static requests if there is a low DoD.

Figure 6.2: The number of completed static and dynamic requests under different DoDs.

6.5. The benefit of using parcels’ roaming delivery locations
We now discuss the of incorporating parcels’ roaming delivery locations within the share-

a-ride operational mode. We continue to use the test instances from Table 7 , and the com-
putational results considering parcels’ roaming delivery locations can be obtained directly. In
the experimental study without these roaming locations, we eliminated all recipients’ roaming
routes and randomly selected one stop from the roaming route as the delivery location for each
recipient. The experiments show that unsuccessful deliveries may occur if drivers cannot drop
off parcels within the specified time windows. However, by accounting for roaming routes,
parcels can be delivered to alternative stops if a delivery fails at the mostly preferred location.
Table 8 summarizes the computational results for scenarios with and without parcels’ roaming
delivery locations. Let Πs be the best revenue of static request scheduling, Πsd be the revenue
after finishing dynamic request scheduling, and the revenue of dynamic part can be calculated
by Πd = Πsd−Πs. We use Nc to count the completed requests in the format of “a+ b” where
a and b denote the completed static and dynamic requests, respectively.

Table 8 illustrates the advantages of incorporating roaming delivery locations within the
share-a-ride operational mode. Overall, considering roaming locations results in higher rev-
enue, especially during the scheduling of static requests, as more parcel requests can be fulfilled.
In contrast, scenarios using only fixed delivery locations often lead to unsuccessful deliveries,
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thereby reducing revenue. Interestingly, the total number of completed requests remains sim-
ilar regardless of roaming delivery locations. For example, with m = 60 and NV T = 20, the
total remains at 36 in both cases. While roaming locations enhance the fulfillment of static
requests, their impact on dynamic scheduling is less pronounced. This may be due to the
fleet’s limited capacity, where available space for dynamic requests is better utilized when
roaming delivery options are included.

Table 8: Computational results with considering parcels’ roaming delivery locations and ignoring parcels’
roaming delivery locations

m ns nd NV T
With roaming delivery locations Without roaming delivery locations
Πs Πd Πsd Nc Πs Πd Πsd Nc

20 11 9 10 39.26 4.4 43.66 10+2 39.26 4.4 43.66 10+2
20 42.86 31.8 74.66 11+9 42.86 31.8 74.66 11+9

40 20 20 10 71.79 2.44 74.23 16+1 69.22 1.12 70.34 16+1
20 83.05 30.2 113.25 20+8 79.01 34.32 113.33 19+10

60 31 29 20 117.88 19.48 137.36 31+5 105.28 28.59 133.87 28+8
30 119.93 54.53 174.46 31+15 110.41 64.63 175.04 29+16

80 40 40 20 156.87 12.22 169.09 40+4 147.24 4.67 151.91 38+2
30 161.4 34.6 196.0 40+10 154.12 38.44 192.56 39+10

100 51 49 20 177.21 5.52 182.73 47+2 165.45 6.01 171.46 45+3
30 192.4 30.82 223.22 51+10 183.24 22.9 206.14 48+8

7. Conclusion

This study addresses the share-a-ride problem with parcels’ roaming delivery locations,
aiming to optimize total revenue from both passenger and parcel requests. We prioritize
passenger service quality by prohibiting parcel pick-ups and drop-offs when passengers are on
board. This approach allows parcels to be delivered according to recipients’ roaming routes,
reducing failed deliveries.

To tackle the SARP-PRDL, we propose an efficient matheuristic solution based on the
branch-and-price framework. Our algorithm outperforms the ALNS algorithm in both small-
scale and large-scale static request scheduling instances. The results from static scheduling
serve as input for the dynamic scheduling process. We evaluate two dynamic schemes: one
with vehicle route reoptimization and the other without. The scheme with reoptimization
shows slightly better performance when vehicle supply cannot meet demand. However, when
there are unused vehicles after static scheduling, the advantage of reoptimization diminishes.

Our numerical study highlights the effectiveness of the proposed method for scheduling
static requests. However, its performance in handling dynamic requests is less obvious due to
constraints imposed by existing vehicle routes, which limit the number of requests that can be
added. Additionally, the solution approach tends to be short-sighted when inserting dynamic
requests; early-arriving requests are prioritized, which can prevent later high-revenue requests
from being served. This limitation represents a drawback of our study. In the future, we aim
to explore algorithms that are better suited for the dynamic request insertion process.
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A. Appendix A: Scheduling static requests by ALNS algorithm

To evaluate the performance of our BP matheuristic algorithm, we apply the adaptive
large neighborhood search (ALNS) algorithm when we solve the static problem. Generally, as
summarized in Mara et al. (2022), the important parts of ALNS have: (i) an initial solution;
(ii) a set of removal operators; (iii) a set of repair operators; (iv) an adaptive mechanism; (v)
an acceptance criterion and (vi) an termination criterion.

In each iteration of ALNS, a combination of operators comprising a removal operator and
a repair operator is selected using the roulette method. The removal operator eliminates both
origins and destinations of certain requests from all routes and adds them to a set of un-
matched requests. Subsequently, the repair operator inserts partial origins and destinations
of requests chosen from the set of unmatched requests. Upon computing the objective value
of the new insertion solution, an acceptance criterion derived from simulated annealing deter-
mines whether the new solution replaces the current one. The ALNS algorithm terminates
when the specified criterion is satisfied. The framework of the ALNS algorithm for addressing
our problem is depicted in Algorithm 3.

Algorithm 3: The framework of ALNS algorithm
Input: An initial solution s0, the set of removal operators, and the set of repair operators
Output: Best solution s∗

Initialize the best solution s∗ ← s0, the current solution s← s0;
while Termination criterion is not met do

Choose a combination of two types of operator according to the roulette method;
Obtain a new insertion solution s′ ← repair(removal(s));
Calculate the objective value of the route s′ ;
if s′ is better than s∗ then

s∗ ← s′, s← s′;
if Acceptance criterion is met then

s← s′;
Update the scores of operators according to the adaptive mechanism;

The removal operators, repair operators and termination criterion are listed as follows.

26



A.1 Removal operators
• Random removal. Partial requests are randomly selected, after which the origins and

destinations associated with these requests are subsequently eliminated from the current
routes.

• Shaw removal. Three shaw removal indicators are utilized to measure the proximity of
request u1 and request u2 such as travel distance, arrival time and the size of luggage or
parcels.

• Worst removal. Initially, the objective function reduction for each request upon its
removal from the current solution is calculated. Subsequently, the request with the
smallest objective function reduction is eliminated. Finally, repeat this process until a
given number of requests have been removed.

A.2 Repair operators
• Greedy repair. We select the candidate request with the highest travel fare and assess its

feasibility for insertion at every available position. If the results indicate infeasibility at
all possible positions, it indicates that no feasible insertion is possible for this request.
Repeat this process until all routes can not be inserted.

• Regret repair. The regret repair operator uses the regret value to select requests and
positions for insertion. First, the regret value for each request upon its insertion from
the set of candidate requests is calculated. Then, the request with the maximum regret
value is chosen for insertion and eliminated from the set of candidate requests. at last,
repeat this process until all routes can not be inserted.

A.3 Termination criterion
The algorithm will terminate if the number of iterations reaches the maximum value defined

in the input to the algorithm, or if the temperature of the simulated annealing process drops
to a threshold value, or if the best solution remains constant after a specified number of
iterations.

B. Appendix B: Heuristic insertion without reoptimization

In this appendix, we present a straightforward heuristic insertion method for dynamic
requests scheduling, which does not consider the reoptimization of vehicle routes proposed in
section 4.3.2. Upon completion of the static requests scheduling procedure, a set of vehicle
routes is generated to be executed at the beginning of the planning period. In each time cycle
t, we attempt to identify a potential insertion for each dynamic request, provided that it does
not leave the system and regardless of whether it belongs to a new request or a backlogged
request. In this approach, any matched static request can never be reassigned to another
vehicle. We define S as the solution and Π(S) the objective value associated with the solution
S. The algorithm of heuristic insertion without reoptimization on dynamic requests scheduling
is provided in Algorithm 4.

Function HeuristicInsertion(S ∪ {i}) can determine whether the request i is able to be
inserted or not. Firstly, the pick-up vertex of request i is inserted into any existed route in
S, and then the drop-off vertex of request i is inserted after finishing insertion of the pick-up
vertex. Finally, if this route satisfies time, capacity, and infeasible edges constraints, this new
route will replace the old one.
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Algorithm 4: Heuristic insertion without reoptimization of vehicle routes on dy-
namic requests scheduling

Input: An static solution S0, a set of dynamic requests
Output: New solution S
Initialize S ← S0;
Each time cycle t ∈ T a subset of dynamic requests still unmatched is obtained;
for every request i in the subset do

S′ ← HeuristicInsertion(S ∪ {i});
if S′ is feasible and Π(S′) > Π(S) then

S ← S′;
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