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Abstract

This paper evaluates the benefit of integrating vehicle-based mobile crowd-sensing tasks
into the ride-hailing system through the collaboration between the data user and the ride-10

hailing platform. In such a system, the ride-hailing platform commissions high-valued
sensing tasks to idle drivers who can undertake either ride-hailing or sensing requests.
Considering the different service requirements and time windows between sensing and ride-
hailing requests, we design a staggered operation strategy for ride-hailing order matching
and the sensing task assignment. The auction-based mechanisms are employed to mini-15

mize costs while incentivizing driver participation in mobile sensing. To address the budget
deficit problem of the primal VCG (Vickrey-Clarke-Groves)-based task assignment mech-
anism, we refine the driver selection approach and tailor the payment rule by imposing
additional budget constraints. We demonstrate the benefits of our proposed mechanism
through a series of numerical experiments using the NYC Taxi data. Experimental results20

reveal the potential of the mechanism for achieving high completion rates of sensing tasks
at low social costs without degrading ride-hailing services. Furthermore, drivers who par-
ticipate in both mobile sensing tasks and ride-hailing requests may gain higher income,
but this advantage may diminish with an increasing number of such drivers and higher
demand for ride-hailing services.25
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1 Introduction
In the past decade, the ride-hailing industry emerged as a significant door-to-door transporta-
tion mode, reshaping urban mobility in many countries. However, the market’s rapid growth
appears to have slowed in its two largest markets, i.e., the United States (Statista, 2023) and30

China (Hanzhi, 2024), leading the ride-hailing platforms into fierce competition with both
external and internal companies. This motivates ride-hailing platforms to explore new niche
markets, including other vehicle-based crowd-sourced activities, alongside human mobility (Li
et al., 2014). For example, food or freight delivery service constitutes a non-negligible part of
the revenue of Uber (Uber-UK, 2023). In China, the problem is more subtle with the advent of35

third-party integrators of the ride-hailing service, such as Amap and Baidu. Many car rental
companies enter the ride-hailing business by leasing vehicles to drivers and assigning the ride-
hailing orders to them with the help of the integrators. In other words, the ride-hailing market
itself is ironically a new niche market for car rental companies. Instead, some researchers and
practitioners have explored the integration of taxi or ride-hailing service with vehicle-based40

mobile sensing (Xu et al., 2019; Wu et al., 2020).
∗Corresponding author. Email: geqian@swjtu.edu.cn
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In the mobile sensing system, either human workers or vehicles equipped with ad hoc
sensors visit specified points of interest passively or in response to platform requests. They
transmit collected data to processing systems and receive rewards from data users. This
sensing approach has been applied to a variety of scenarios in urban management, including45

pollution monitoring (Hasenfratz et al., 2015; Jezdovi et al., 2021), infrastructure maintenance
(Eriksson et al., 2008), and traffic congestion management (Guo et al., 2022). However, vehicle-
based mobile sensing is limited by sampling bias due to the sensitivity of the resulting dataset
to the vehicles’ mobility patterns. Although dedicated sensing vehicles offer high levels of
sensing flexibility and reliability since they are fully controllable to fulfill very specific sensing50

requirements (Ji et al., 2023), the costs associated with their procurement, operation, and
maintenance make large-scale deployment in the road network challenging for data users.
Consequently, there is a need for data users to identify cost-effective alternatives for collecting
sensing data, thereby reducing expenditure on dedicated sensing vehicles.

Inspired by this, we investigate an operational strategy for vehicle-based mobile crowd-55

sensing that integrates sensing tasks with ride-hailing requests, incentivizing drivers to un-
dertake tasks while maintaining service levels for regular riders. In this business model, a
data user collaborates with a ride-hailing platform by releasing a third-party app for sensing
tasks and commissioning these tasks to a pool of available drivers. These drivers are semi-
controllable because they are autonomous in selecting the tasks but their service patterns60

could be altered by the data users or platform by incentivization. Both the driver and the
ride-hailing platform receive commissions from the data user for successfully completed sens-
ing tasks. Any remaining sensing tasks, such as areas where no driver is available, would be
handled by a dedicated vehicle fleet owned by the data user. This approach allows the data
user to cut down its own vehicle fleet for data sensing, enables drivers to earn extra income65

through side gigs, and may increase revenue for the ride-hailing platform. The operational
strategy is illustrated in Figure 1.

Type-A vehicle

Type-B vehicle

Rider

MST

bid 

bid

Successful hailing order/MST matching
A type-B vehicle’s bid to an MST

bid 

bid

Figure 1: Schematic of the ride-hailing order and MST assignment system. Type-A vehicles are
exclusively designated for ride-hailing orders, whereas Type-B vehicles have the flexibility to handle
both passenger delivery and mobile sensing tasks. Initially, the ride-hailing platform matches vehicles
with riders and then allocates mobile sensing tasks to the remaining Type-B vehicles through an
auction-based procedure.
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For the data user, a sensing point of interest (PoI) constitutes an individual sensing task,
navigating a vehicle with sensing device to this location for a brief stop to collect data. It
usually takes the driver several minutes to obtain a complete data sample. Hence, sensing tasks70

could be outsourced to ride-hailing platforms by generating an equivalent number of ‘artificial
ride-hailing requests’ at PoIs and assigning these tasks to drivers through the similar procedure
used for ordinary trip requests. While this strategy may benefit the data user, it may not align
with the operational objectives of the ride-hailing platform, which must prioritize trip requests
to ensure service levels and maintain customer loyalty. Additionally, sensing tasks differ from75

trip requests not only in their spatial distributions and pickup/drop-off time windows (or
earliest commencement and latest completion times for sensing tasks), but also in factors such
as quantity, service quality and driver commitment. The regular driver-rider matching pattern,
along with the prescribed taxi fare for ordinary ride-hailing requests, may not be suitable for
sensing tasks. More crucially, the completion rate of sensing tasks might not attain an ideal80

objective without the active involvement of drivers, and it would be imprudent to mandate
the acceptance of drivers concerning these tasks. For the ride-hailing platform, the process of
trip matching should not be hindered or negatively influenced by the introduction of a series
of sensing tasks. To tackle these challenges, the ride-hailing platform may need to implement
different rules for matching drivers with mobile sensing tasks (MSTs) and ride-hailing requests.85

To the best of our knowledge, this paper presents the first operational strategy for address-
ing the integrated mobile sensing and ride-hailing task assignment problem within a unified
ride-hailing system, aimed at benefiting all involved stakeholders. Specifically, our objectives
are as follows:

(i) How can we ensure that all stakeholders, including the data user, the ride-hailing plat-90

form, and the drivers, derive benefits or, at the very least, do not suffer any negative
impact from the introduction of MSTs to the ride-hailing platform?

(ii) What methods can be employed to incentivize drivers to accept and successfully complete
sensing tasks?

(iii) How to conduct sensing tasks while maintaining a satisfactory service level of trip match-95

ing?

(iv) Given a limited budget from the data user, how can we achieve adequate coverage of
areas of interest through vehicle-based mobile crowd-sensing?

(v) What is the impact of system design parameters on the effectiveness of the operational
strategy?100

We make the following contributions in this paper:

(i) We introduce an operational strategy for the ride-hailing platform that coordinates the
assignment of trip requests and mobile sensing tasks. Previous studies have highlighted
that while dedicated vehicles for sensing tasks offer strong reliability and flexibility, their
high costs make large-scale deployment within road networks challenging (Han et al.,105

2024). The strategy proposed in this paper provides the data user with the potential
to reduce sensing costs, including the expenses associated with procurement, operation,
and maintenance of dedicated vehicles, as well as the costs of recruiting and training
full-time drivers.

(ii) While formalizing trip request matching as a bipartite graph matching problem, we110

commission mobile-sensing tasks to drivers through an auction-based approach. This
approach is a refinement of the classical Vickrey-Clarke-Groves (VCG) mechanism, with
an added guarantee on the total budget. This refinement ensures favorable economic
properties such as individual rationality (IR), incentive compatibility (IC), and budget
balance (BB).115
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(iii) We evaluate the performance of the proposed model framework on the TLC Trip Record
Data. Computational results demonstrate that our coordinated operational strategy
offers the benefits of the data user, ride-hailing platform, and drivers without compro-
mising service levels for ride users. Furthermore, our refined mechanism reduces the
total cost of mobile sensing compared to the VCG mechanism.120

The remainder of this paper is organized as follows. Section 2 reviews literature related to
this study. Section 3 presents the model framework for coordinating the trip matching and the
task assignment problems. Our refined mechanism for task assignment and its economic prop-
erties are described in Section 4. Section 5 summarizes the main results and the managerial
insights of computational experiments. Section 6 concludes this work.125

2 Literature review
This paper explores the coordination strategy of trip matching and task assignment within
the ride-hailing platform. We categorize the related literature into three main streams: (1)
vehicle-based mobile crowdsensing, with an emphasis on the use of taxis, (2) coordination
of ride-hailing services with delivery or other tasks, and (3) auction-based mechanisms for130

resource allocation in transportation.

2.1 Taxi-based mobile crowdsensing

Vehicles are widely used for mobile crowdsourced tasks, especially urban data collection, and
crowdsourced delivery, for their advantages in high mobility, scattered distribution, and low
cost. The mobile crowdsensing tasks could be performed either by active data collectors who135

are primarily dedicated to the sensing tasks or passive data collectors who record the data while
conducting other tasks. There are large studies addressing the data collection, completion,
assimilation, and training problems of active data collectors for mobile sensing. One may refer
to (Ji et al., 2023) for a recent review on this topic.

Our work focuses exclusively on ride-hailing taxis, which fall in the group of passive data140

collectors. In contrast to the active data collectors, the routes and trajectories of the taxis
could not be planned or coordinated by a centralized operator, i.e., the sensing power is
sensitive to the driving and cruising behavior of taxi drivers(O’Keeffe et al., 2019). Some
unpopular streets or areas are rarely or even never visited by taxis. Nonetheless, providing
information on the spatial and temporal demand to the drivers will affect their behaviors and145

welfare increase among drivers (Zhang et al., 2020). Further explorations on the mobility
behavior of taxi drivers may refer to Wang et al. (2019).

Instead of controlling the trajectories of taxis directly, for which the effect is doubted, a
more realizable solution is to develop incentive mechanisms to motivate the drivers to cover
the ideal areas (Ji et al., 2023). Masutani (2015) develop a routing control scheme that rec-150

ommends routes to a subset of vehicles that maximize the sensing quality. Fan et al. (2019)
applies the reverse combinatorial auction to motivate taxi drivers to perform the sensing tasks
following the scheduled trajectories. Xu et al. (2019) and Chen et al. (2020) navigate the
idle taxis mounted with sensors to achieve desirable sensing quality. A comparable incentive
mechanism is proposed to motivate drivers to follow the navigation. Asprone et al. (2021)155

calculates a set of ε-minimum routes for partial vehicles such that sensing coverage is maxi-
mized, in which the cost of any ε-minimum route is less than that of the minimum cost route
multiplied by a predefined parameter ε.

The existing studies assume that a taxi can only be dedicated to either conducting sensing
tasks or serving passengers. However, this assumption does not accurately conform to reality160

and tends to overestimate the success rate of drivers in undertaking sensing tasks. It overlooks
the opportunity costs involved in conducting regular work, which could affect drivers’ will-
ingness to undertake sensing tasks. This observation motivates us to develop an operational
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strategy that integrates sensing tasks, though small in quantity compared to ride-hailing or-
ders, into the regular workflow of drivers. In this approach, we assume the drivers are rational165

and choose sensing tasks based on their net utility. To our knowledge, this approach is novel
in the literature on taxi-based mobile sensing.

2.2 Coordination of multiple tasks in the taxi network

The literature on the coordination of multiple heterogeneous crowd-sourcing tasks within the
taxi/ride-hailing network is new and fast-growing (Alnaggar et al., 2021). An promising170

attempt is the Share-a-ride problem (SARP) in which a mixed integer linear program is
formulated to plan the set of sharing routes for passengers and parcels using the same fleet of
taxis (Li et al., 2014; Ji et al., 2024). It is noted that people and freight delivery differ in many
aspects such as price and service level. Nevertheless, the passengers should be prioritized in
the person-freight shared taxi network. Chen et al. (2017) propose a heuristic strategy for175

collecting e-commerce reverse flow using taxis. For the sake of reducing environmental impact
and promoting the revenue of drivers, only taxis with passengers on board are allowed to collect
returned goods. The freight delivery with the mixed fleet of regular and occasional vehicles is
studied as the Vehicle Routing Problem with Occasional Drivers (VRPOD) by Archetti et al.
(2016). In such a problem, the number of regular drivers is unlimited but they may request180

high cost. Vice versa for the occasional drivers. Extensions to online and bundle delivery
problems are made by Archetti et al. (2021) and Mancini and Gansterer (2022), respectively.
There is also a vast of studies using the auction-based approach to commission delivery tasks to
shippers (Zou and Kafle (2023) for example), their technical details will be reviewed in the next
section. Despite its limitation in scalability (Qi et al., 2018), the potential economic benefit185

and operational flexibilities of the crowdsourced delivery make it particularly attractive to
shippers. However, crowdsourced parcel delivery services differ from sensing tasks in terms of
spatial distribution, request volume, and vehicle requirements. While parcel delivery strategies
may offer some inspiration, further adaptation is needed for our study.

In addition to the integrated operation strategies for multiple crowd-sourcing tasks in the190

taxi network, one may also be curious about the business modes of their alliance. Unfortu-
nately, no study is available on how heterogeneous tasks are coordinated by the same operator.
However, a similar business mode in which different ride-hailing platforms for the same tasks
are coordinated within one integrator has been studied by a handful of researchers. Zhou et
al. (2022) first investigate the third-party platform integration in ride-sourcing markets and195

assumes the integrator could directly control the vehicle-ride request matching process, de-
spite which ride-hailing platform a vehicle is affiliated to. Thus, the integrator is responsible
for maximizing the number of realized hailing orders and social welfare respecting the equilib-
rium among ride-hailing platforms. Li et al. (2024) observe that the ride-hailing platforms may
create a so-called ‘artificial scarcity’ market phenomenon by sacrificing the order completion200

rate for high profit, which is caused by the inappropriate pricing strategy of the integrator.
They propose a Stackelberg game model for pricing to remove artificial scarcity. Bao et al.
(2023) address a ride-hailing order assignment approach for the third-party integrator aiming
at minimizing the waiting time of passengers.

Despite the abundance of literature on the market environment, business operation, and205

stakeholders’ decision-making problems of the ride-hailing platform (Wang and Yang, 2019),
there is limited study on the coordination of taxis for heterogeneous tasks by one operator.
Before stepping into the technical details, the ride-hailing platforms are curious about problems
such as whether will they benefit from the crowd-sourced tasks, how the crowd-sourced tasks
are released dynamically, how the crowd-sourced tasks and ride-hailing requests are organized210

to guarantee the service level for passengers, how the targeted drivers are selected, how to
commission the tasks to the appropriate drivers to avoid reluctance, etc. Our work will answer
this operational problem when coordinating the sensing tasks and ride-hailing requests in the
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same taxi network.

2.3 Auction-based task allocation in mobility215

Auction-based mechanism designs have been extensively used in various mobility task alloca-
tion problems such as shared rides matching (Yan et al., 2021; Bian et al., 2020), parcel delivery
(Li et al., 2022) and mobile sensing task commission (Fan et al., 2019). The main motivation
for using an auction-based assignment approach is to ensure the welfare of all stakeholders
involved in the trading process. The auction approaches could be broadly classified into: (i)220

combinatorial auction, in which a bidder is allowed to submit price for multiple tasks in each
round of auction (Hammami et al., 2021); (ii) sequential auction, in which the targets are
released dynamically over time and are auctioned sequentially (Mochon et al., 2022; Kong et
al., 2023); and (iii) double auction, in which both the supply and demand sides are allowed to
make offers and the auction is settled by the auctioneer (Xu et al., 2017; Li et al., 2020). There225

are also research works that fall into the intersection of two groups, (Karamanis et al., 2020)
for example, in using the combinatorial double auction for solving the ride-sharing assignment
and pricing problems.

While numerous studies address task allocation issues in mobility services, the auctioning
of mobile sensing tasks to ride-hailing drivers remains largely unexplored. The distinctive230

characteristics of these tasks, such as their sparse spatial distribution, flexible time require-
ments, and limited data volume, necessitate tailored approaches when implementing auctions.
Moreover, concerns regarding budget deficits from both data users and ride-hailing platform
operators in adopting taxi-based mobile sensing should also be addressed. Otherwise, data
users may opt to utilize their dedicated vehicles for data collection. To tackle these challenges,235

we propose a novel auction-based mechanism for assigning mobile sensing tasks that excludes
non-economical matching combinations and refines the payment rule.

3 Coordination of ride-hailing and mobile sensing tasks
This section delves into the coordination of ride-hailing requests and mobile sensing tasks
within a single ride-hailing taxi fleet. The platform operates with two types of taxis: Type-240

A vehicles exclusively handle trip requests, while Type-B vehicles are equipped with sensing
devices and can accommodate both trip requests and mobile sensing tasks. Denoting the sets
of Type-A and Type-B vehicles as D and D̃ respectively, it’s worth noting that the fleet size
of Type-B vehicles is typically smaller due to the higher costs associated with purchasing and
installing sensing devices. The union of these sets, D = D ∪ D̃ represents the entirety of taxis245

registered with the ride-hailing platform.
Consider a study area comprising various locations identified for monitoring purposes,

each corresponding to a pending sensing task. Given that the completion rate of sensing
tasks hinges on the availability of active Type-B drivers, employing an auction-based task
assignment method becomes favorable to motivate Type-B drivers to undertake sensing tasks.250

This incentivization is driven by the potential for Type-B drivers to earn a higher expected
reward from sensing tasks compared to trip requests. To distinguish the difference of execution
between passenger requests and sensing tasks, we segment the service time of Type-B vehicles,
denoted as T , into multiple decision-making cycles.

Figure 2 presents different phases of one complete decision-making cycle. Each complete255

decision-making cycle T ∈ T comprises three phases: (i) the exclusive trip matching phase
(T1), during which trip requests are assigned to both Type-A and Type-B vehicles; (ii) the
trip matching and mobile sensing task bidding phase (T2), in which Type-B drivers can bid
on multiple sensing tasks while Type-A drivers continue to match trip requests; and (iii)
the trip matching and mobile sensing task assignment phase (T3), where sensing tasks are260

first allocated to Type-B vehicles through the rule of winner determination, followed by the
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One decision-

making cycle

Phase 𝑇3

Matching ride-hailing requests

Matching ride-hailing requests

Mobile sensing task bidding process

Matching ride-hailing requests

Mobile sensing task assignment

Type-A vehicle (normal)

Type-B vehicle (with sensing device)

Phase 𝑇1

Phase 𝑇2

Phase 𝑇3

... ... ...Phase 𝑇1 Phase 𝑇2 Phase 𝑇3

One decision-making cycle

A short time period t used for trip matching and updating information.

Figure 2: Phases of one decision-making cycle. A decision-making cycle is divided into three
phases, which may be further subdivided into multiple time periods. In each time period t, a trip
matching is performed once, and dynamic information regarding trip requests and sensing tasks is
updated accordingly.

Table 1: Key parameters and variables

Indices and sets

Dt Set of available drivers in the t-th interval (including both the Type-A and Type-B drivers)
D̃t Set of available Type-B drivers in the t-th interval (D̃t ⊆ Dt)
Rt Set of available riders in the t-th interval
Kt Set of task requests released in the t-th interval
A Set of region in geographic network

Parameters and constants

psr Base price charged from a matched rider r
Ls
0 Travel distance covered by the initial fare

ts0 Travel time covered by the initial fare
l0 Average service distance of all trip requests
β1 Incremental cost per unit travel distance when the distance exceeds Ls

0
β2 Incremental cost per unit time when the time exceeds ts0
pr Total fare charged from a matched rider r
pdr Driver d’s earning to pick up the rider r from the ride-hailing platform
V Average vehicle speed
fm Upper bound of opportunity cost in cruising time
ξ Constant time cost in executing sensing task
Lub Maximum pick-up distance
α Driver’s expected earning per unit travel distance
b The upper bound of bid value
b The lower bound of bid value
µ Coefficient for calculating opportunity cost in the task assignment
cq Operating cost per unit travel distance when using the dedicated vehicle
C Base reward for a task request
Ω Overall budget for sensing tasks

Decision variables

xt
dr Binary variable equals to 1 if driver d ∈ Dt is matched with a rider r ∈ Rt are matched in the t-th

interval, and 0 otherwise
xt
dk Binary variable equals to 1 if driver d ∈ D̃t is matched with a sensing task k ∈ Kt in t-th interval, and 0

otherwise
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assignment of trip requests to Type-A drivers and any Type-B drivers who fail in sensing task
assignment.

In the phase T1, both Type-A and Type-B vehicles enjoy equal priority, and the operation
of Type-A vehicles remains unaffected by the sensing task assignment in T2 and T3. By the265

end of phase T1, the ride-hailing platform first checks the availability of Type-B vehicles and
then determines whether to initiate an auction for sensing tasks and how many tasks to be
assigned. If the number of idle Type-B drivers is below a specified threshold, no sensing tasks
will be commissioned. In this case, the phases T2 and T3 will be dedicated to ride-hailing
requests, similar to Phase T1. The ride-hailing platform will evaluate whether to commission270

the sensing tasks in the next decision cycle.
In the phase T2, the ride-hailing platform releases a specific number of sensing tasks. Each

task forms an auction venue. Eligible drivers, including those Type-B drivers who shift to
the idle state following the completion of a sensing task or trip request and those who fail to
match any trip requests, are allowed to bid on multiple tasks. It should be noting that not all275

idle Type-B drivers will be selected by the ride-hailing platform for sensing tasks. Instead, a
subset of the drivers is chosen such that they have limited impacts on rider service.

In the phase T3, as the bidding concludes, the ride-hailing platform gathers bids from
each auction venue. It then determines the winners and payoffs for each sensing task through
a combinatorial auction process. Notably, the platform first assigns sensing tasks before280

conducting trip matching. Type-B drivers who submitted bids for sensing tasks but were not
successfully assigned will join unmatched Type-A drivers in the trip-matching process. In
other words, sensing tasks are assigned to a subset of Type-B drivers at the beginning of the
phase T3, while trip matching continues throughout this phase, involving both idle Type-A
and Type-B drivers.285

Some notations consistently utilized throughout this article are summarized in Table 1.
The following assumptions are made for modeling the problem:

(1) The data user collaborates with the ride-hailing platform, providing a total budget for
conducting sensing task assignment and then installing sensing devices onto Type-B vehicles.
In addition, the ride-hailing platform releases a third-party app for assigning sensing tasks to290

a pool of available Type-B drivers.
(2) Drivers cannot simultaneously execute sensing tasks and ride-hailing requests.
(3) Each sensing task specifies a PoI. Upon arriving at the designated PoI, the driver

performing the sensing task must make a brief stop to allow the sensing device to collect data
at the location.295

(4) A driver’s private valuation for performing a sensing task is assumed to be a piecewise
linear function dependent on distance.

3.1 Opportunity cost of drivers

Within the set of trip requests and MSTs, certain remote requests may exist, with their
destinations located in suburban areas. Serving these requests would require drivers to leave300

high-demand areas. Typically, although drivers could immediately return to high-demand
areas after servicing remote requests, they may still be reluctant to accept such requests. This
is particularly true when dropping off passengers in suburban or rural areas, as searching for
subsequent MSTs or trip requests in low-demand regions often requires more time. Hence,
in addition to the direct rewards from sensing tasks and trip requests, drivers often factor in305

opportunity costs when deciding whether to undertake a trip request or MST. In this study,
we adopt different criteria to the assessment of opportunity cost in accepting trip requests and
mobile sensing tasks.
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3.1.1 The estimation of opportunity cost from trip requests

Opportunity cost from trip requests can be roughly estimated by considering a driver’s ex-310

pected waiting time at the destination for a new request. The expected waiting time for the
next trip request depends on both the supply and demand at the destination, encompassing
the number of available vehicles and trip requests. It is worth noting that these values can be
estimated from historical data or calculated on the fly.

Let naT denote the estimated number of trip requests in the region a during the decision-315

making cycle T , ntaxi
aT denotes the estimated number of available drivers in the same region

within this cycle, and T0 indicates the duration of each cycle. Thus, naT

ntaxi
aT

signifies the antic-
ipated number of trip requests allocated to each driver if they head towards region a during
the decision-making cycle T . The expression naT

T0ntaxi
aT

represents the average number of trip

requests matched per driver per unit of time. Consequently, we let its inverse T0ntaxi
aT

naT
= ∆t320

correspond to the duration between completing one trip request and being matched with the
next trip request in the region a, effectively denoting the estimated cruising time in that re-
gion. In addition, Assuming that the cruising time of any driver follows a uniform distribution
U [0,∆t], the expected cruising time is given by ∆t

2 . However, if naT is exceedingly small, ∆t
can become extremely large. To avoid such a situation, we may impose an upper bound fm325

on the opportunity cost. Therefore, a driver’s opportunity cost for picking up a trip request
with the destination rd in the cycle T is calculated by:

f(rd) = min

{
fm, αV ·

T0n
taxi
ardT

2nardT

}
, (3.1)

where α is a driver’s basic reward per unit travel distance, V is the average vehicle speed, and
ard is the area where the destination rd is located. The Equation (3.1) will be incorporated
into the driver’s earning to pick up riders, as shown in Equation (3.4).330

3.1.2 The estimation of opportunity cost from mobile sensing tasks

The procedure for calculating the opportunity cost of accepting a sensing task is different from
that of accepting a trip request. If a Type-B driver accepts a sensing task, this driver may
lose the opportunity to pick up any riders in the neighboring area after completing the sensing
task. We note that the MSTs usually occur in remote areas with low trip demand rate, and335

the Type-B drivers may have to experience long deadheading trips after serving these tasks.
Thus, their opportunity cost should account for the extra costs from deadheading distance
and time duration of the sensing task at the destination.

Then, we can simplify the determination of opportunity cost by assuming it relies on
the distance between the driver’s current location and the PoI associated with the MST, the340

estimated deadheading time, and sensing time at the PoI. In this study, if the distance a
vehicle travels to the designated PoI for a sensing task is less than the average distance of trip
requests l0, the driver only needs to consider time cost incurred by searching for next request
and executing sensing task. This is because, in practice, the majority of trip requests are not
long-distance, and accepting such sensing task typically does not produce extra distance-based345

cost. The sensing task’s opportunity cost g(l) can be expressed as a non-decreasing function
of this distance and is incorporated into the driver’s private valuation, as shown in Equation
(3.12).

g(l) = fm + ξ +max {0, µ(l − l0)} µ > 0 (3.2)

Here, for simplicity, we directly let fm be the deadheading time cost at the PoI associated
with the MST. ξ denotes a constant time cost when a driver executes a sensing task at the350
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PoI. l denotes the shortest distance traveling to the PoI marked on a sensing task, whereas l0
indicates the average service distance of all trip requests.

3.2 Trip matching problem

Trip matching model is established for finding potential matches between available drivers and
newly arrived or backlogged trip requests. This matching procedure is executed sequentially355

in small time intervals during the decision-making cycle, regardless of whether it occurs in
phase T1, phase T2, or phase T3.

When the rider r is matched by the ride-hailing platform, the fare charged to the rider
comprises several components: the initial hailing fare, additional distance- and time-based
fares. The total fare pr can be expressed as:360

pr = psr +max {0, β1(Lr − Ls
0)}+max {0, β2(tr − ts0)} , (3.3)

where psr represents the basic price set by the ride-hailing platform. The second term accounts
for any additional distance-based fare when the shortest distance Lr from origin to destination
exceeds the basic distance Ls

0. The third term represents any additional time-based fare when
the actual travel time tr exceeds the basic time ts0. Ls

0 and ts0 denote the base distance and
time covered by the basic taxi fare, respectively.365

When a driver d accepts the trip request from the rider r, this driver can receive the earning
to pick up the rider r from ride-hailing platform. We let the earning pdr from serving the rider
r consist of two components: a distance-based fare and an additional fare arising from the
opportunity cost shown in Equation (3.1). Such additional fare encourages the driver to take
remote trip requests, thereby increasing the number of successful matches and regulating the370

distribution of vehicles across different regions (You et al., 2023).

pdr = αLr + f(rd) (3.4)

Here, pdr is the driver d’s earning to pick up the rider r from ride-hailing platform. Lr

represents the shortest distance from the origin ro of rider r’s request to its destination rd.
f(rd) denotes the additional payment arising from the opportunity cost when a driver drops
off rider r at the destination rd.375

Following the idea of Agatz et al. (2011), our objective function is minimizing the total
pickup distance while maximizing the number of matched driver-rider pairs. These objectives
can also be regarded as maximizing the total pickup distance saving. Let Ldr represent the
pickup distance in time period t ∈ T . The saved distance for a driver-rider pair is calculated
as σt

dr = maxr∈Rt {Ldr} − Ldr. We formulate the trip-matching problem as follows:380

max
∑
d∈Dt

∑
r∈Rt

σt
drx

t
dr (3.5)

s.t.
∑
d∈Dt

xtdr ≤ 1, ∀r ∈ Rt (3.6)

∑
r∈Rt

xtdr ≤ 1, ∀d ∈ Dt (3.7)

(ptr − ptdr)x
t
dr ≥ 0, ∀d ∈ Dt, r ∈ Rt (3.8)

σt
dr = max

r∈Rt

{Ldr} − Ldr, ∀d ∈ Dt, r ∈ Rt (3.9)

Ldrx
t
dr ≤ Lub, ∀d ∈ Dt, r ∈ Rt (3.10)

xtdr ∈ {0, 1} , ∀d ∈ Dt, r ∈ Rt (3.11)
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Constraints (3.6) and (3.7) ensure that each driver and rider can be assigned only once.
Constraint (3.8) excludes assignments resulting in negative revenues, while constraint (3.10)
prevents assigning riders to drivers who are excessively far from them.

The trip-matching problem can be viewed as a bipartite graph-matching problem, noting
Constraints (3.8)-(3.10) can be calculated beforehand. This problem can be efficiently solved385

using the Kuhn-Munkres (KM) algorithm, which finds the maximum weight perfect matching
on the bipartite graph G(Nt, Et) representing drivers, riders, and their potential matches. In
this graph, the vertices Nt comprise the set of drivers Dt and riders Rt, while the edges Et

represent potential matches between drivers and riders, with weights corresponding to the cost
σt
dr calculated by Equation (3.9).390

To calculate the optimal matching, we initially eliminate the infeasible edges. Each vertex
is then assigned an initial label: for one group of vertices, the labels are set to their maximum
potential weights among all possible matches, while for the other group, the labels are set to
0. These labels are iteratively updated to identify augmenting paths in the bipartite graph.
The algorithm terminates when no new matches are available. The KM algorithm is outlined395

in detail in Algorithm 1.

Algorithm 1: Kuhn-Munkres Algorithm
Input: The set of drivers Dt, the set of riders Rt, weight matrix W
Output: Optimal perfect matching

1 Construct a square matrix W by adding virtual drivers and riders;
2 Initialize a match M and labels for the drivers lx and the riders ly ;
3 for u ∈ Dt do
4 while True do
5 Reset all vertices to unvisited state;
6 Find the augment path p(u) for u;
7 if no augment path exists then
8 break;
9 for v ∈ Rt do

10 if v not visited and lx[u] + ly[v] == W [u, v] then
11 Find a augment path p(v) for v;
12 if v is not matched or p(v) exists then
13 Augment path p(u)← (u, v);
14 M ← (u, v);

15 Find the tuple (u, v) that u is visited but v is not;
16 Update each visited vertex’s label with minimum ∆ = lx[u] + ly[v]−W [u, v];

3.3 The primal VCG-based MST assignment (VCG-MST) mechanism

In order to achieve efficient and fair allocation of MSTs, we briefly introduce the framework
of auction-based mechanism, i.e., the VCG-MST. This mechanism entails the participation
of both the drivers and the platform. As indicated in Figure 3, the platform releases MSTs400

at the beginning of phase T2, and then each Type-B driver can submit his/her unit-distance
commission to a subset of MSTs to the platform. The plaform calculates the true valuation
by collecting bids from all bidders. Then, the platform will allocate released MSTs to a
subset of bidders in the phase T3 in the auction decision-making process. This procedure is
coined winner selection. Finally, the platform calculates the payments to drivers based on the405

payment determination procedure following the VCG rule.
The primary motivation for the data user collaborating with the ride-hailing platform to

utilize Type-B vehicles for MSTs lies in reducing their costs associated with purchasing and
maintaining dedicated sensing vehicles. In addition, the overall budget for sensing tasks is
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Phase 𝑇2

Phase 𝑇3

Mobile sensing task assignment in each decision-making cycle

Releasing MSTs
Collecting bids from 

Type-B drivers

Auction 

bidding process

Winner selection
VCG payment 

determination

Auction decision-

making process

Figure 3: The framework of mobile sensing task assignment based on the VCG-MST
mechanism.

provided by the data user, and the ride-hailing platform needs to regulate the expenditure410

of the budget. Hence, the objective of the MST assignment problem is to minimize expenses
or maximize savings on expenses related to sensing tasks. Before constructing the MST
assignment model, we firstly introduce the auction bidding process where Type-B drivers
state their bidding information to the platform.

3.3.1 The auction bidding process415

In the auction bidding process, the ride-hailing platform is responsible for the release of MSTs
and the subsequent collection of bids from Type-B drivers. The bidding information is used
for the purpose of informing the auction decision-making process and is provided by these
participants. Therefore, it is a process that requires the participation of both parties. In this
subsection, we intend to define a few terms for subsequent argumentation about bidding on420

the driver’s side.

• Private valuation. The private valuation presents a Type-B driver’s estimation of earning
to an MST. It is a piecewise linear function, including the distance-based fare and
opportunity cost of this driver.

• Stated valuation. The stated valuation refers to the price submitted by a Type-B driver425

to the platform through bidding. It comprises the base reward set by the platform for
completing the sensing task and the driver’s bid price.

• True valuation. The true valuation indicates the actual price that a Type-B driver would
like to submit, defined as the maximum between the private valuation and the stated
valuation. It will be collected by the platform for the purpose of informing the auction430

decision-making process.

In the t-th interval, the private valuation of Type-B driver d who would like to serve the
sensing task k, denoted by vtdk, is calculated based on distance-based fare and opportunity
cost in Equation (3.2):

vtdk = αldk + g(ldk) =

{
αldk + fm + ξ ldk ≤ l0

αl0 + (α+ µ)(ldk − l0) + fm + ξ ldk > l0
(3.12)

Here, the private valuation can be depicted as a piecewise linear function, and l0 denotes435

the average service distance of all trip requests.
During the phase T2 in each decision-making cycle, a Type-B driver d ∈ D̃t has the option

to submit bids for a limited number of MSTs at the same unit price. In this study, drivers are
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permitted to freely determine the per-unit distance commission Bt
dk within a specified range

through bidding. This value is incorporated into the driver’s stated valuation and any valid440

bid Bt
dk must satisfy the following inequality:

α ≤ b ≤ Bt
dk ≤ b. (3.13)

Here, b and b denote the lower and upper bounds of the earning per unit distance, respec-
tively. And α represents the expected earning per unit distance for serving a rider. Let cq
denote the sensing cost per unit distance of a dedicated sensing vehicle for completing a task.
Furthermore, we assume cq ≥ b. If driver d does not bid for an MST k, we set Bt

dk = +∞,445

preventing the pair (d, k) from being selected in the assignment model. It’s important to note
that all drivers independently submit their bids. In other words, any driver can not get access
to bidding information from other drivers.

When a driver d is submitting a bid, a third-party app released by the platform auto-
matically calculates the stated valuation based on the base reward, the bid and the shortest450

distance between this driver’s location and PoI marked on the sensing task k. The driver d’s
stated valuation for MST k is calculated as follows:

ṽtdk = C +Bt
dkldk (3.14)

where C is the driver’s base reward on completing an MST, and ldk indicates the travel
distance between driver d’s current location and the location marked on sensing task k. It
should be noting that when ldk = 0, the driver d is located exactly at the PoI marked on the455

sensing task k. The base reward for sensing task should cover the opportunity cost incurred
by deadheading time and sensing time as described in Equation (3.2). (e.g., C ≥ fm + ξ)

Intuitively, one might assume that the stated valuation would exceed the private valuation;
however, this is not always the case. As we noted previously, a driver could submit his/her
bid to the platform by simply inputting the unit-distance commission. The driver’s valuation460

to an MST could be calculated based the unit-distance commission, the total distance of
deadheading trip and the driver’s opportunity cost. The platform could identify the stated
valuation of a driver, as it is calculated by what the driver reports to the platform. However,
this formula neglects the drivers increasing reluctance to overlong distance requests, which
most likely take a form of piecewise linear function shown as the private valuation. Figure 4465

illustrates the relationship between the stated valuation (3.14) and the private valuation (3.12)
under different parameter settings. The figure on the right shows that the stated valuation
is always above the private valuation. As for the figure on the left, we may calculate the
intersection of two linear functions. Clearly, l∗ = C+µl0−fm−ξ

α+µ−Bt
dk

. When the distance ldk > l∗,
the stated valuation is less than the private valuation. In this case, the driver d may suffer470

a potential negative utility if this driver submit bidding information to platform according to
the stated valuation.

For a rational driver, his or her utility, defined as the difference between the final earning
and the private valuation, is not allowed to be negative. If the stated valuation is lower
than the private valuation, submitting the stated valuation could result in a final earning,475

calculated by the mechanism, that falls below the private valuation. To prevent this issue,
drivers could submit a formal request to the platform, allowing them to directly provide
their private valuation to the system. The platform may raise the commission of an MST
to the maximum of these two valuations to incentivize the driver to conduct sensing tasks.
This maximum is named true valuation, defined as the maximum between the drivers stated480

valuation ṽtdk and private valuation vtdk, as shown in Equation (3.15):

vtdk = max
{
C +Bt

dkldk, αldk + g(ldk)
}

(3.15)
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Figure 4: A driver’s stated valuation and private valuation to a task. Left: When Bt
dk < α+ µ and

ldk ≥ l∗ = C+µl0−fm−ξ
α+µ−Bt

dk
, ṽtdk < vtdk. This driver is allowed to submit the greater of two valuations as

bidding information. Right: Bt
dk ≥ α+ µ, ṽtdk ≥ vtdk. The stated valuation is always greater than the

private valuation, and this driver can benefit from submitting stated valuation.

3.3.2 Winner selection

After the auction bidding process, the platform will collect true valuations for auction decision-
making process.

In this study, the sensing cost saving δtdk quantifies the cost reduction achieved by assigning485

the MST to a Type-B driver instead of dispatching a dedicated vehicle. This cost reduction
is computed as follows:

δtdk = cq · lqk − vtdk. (3.16)

Here, cq represents the unit cost per unit distance when using a dedicated vehicle, while lqk
denotes the distance from the nearest depot of dedicated vehicles to the MST k, which can be
estimated by the shortest distance between them.490

In the phase T3 ∈ T , as we mentioned before, a Type-B driver may be assigned either
a ride-hailing request or an MST. The following inequality ensured that any Type-B driver
could handle at most one sensing task or trip request simultaneously:

xtdr ≤ 1− xtdk, ∀d, r, k ∈ D̃t,Rt,KT ; t ∈ T3. (3.17)

Here, D̃t represents the set of available Type-B vehicles in time period t, Rt denotes the
set of available riders in time period t, and KT indicates the set of MSTs released in the495

decision-making cycle T .
An auction venue will determine a winner if at least one driver’s true valuation is collected.

In mathematical terms, this condition can be expressed as:

τ tk = 1, if ∃δtdk > −∞, ∀k ∈ KT , (3.18)

where τ tk is an indicator variable that equals 1 if the MST k is assigned to any driver, and 0
otherwise.500

We present the following integer linear programming model to select the winners of the
MSTs in the time period t ∈ T3:
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[MST-P1]

max Π =
∑
k∈KT

∑
d∈D̃t

δtdkx
t
dk (3.19)

s.t. Eqs.(3.15)− (3.18)∑
k∈KT

xtdk ≤ 1, ∀d ∈ D̃t (3.20)

∑
d∈D̃t

xtdk ≤ 1, ∀k ∈ KT (3.21)

∑
d∈D̃t

xtdk ≥ τ tk, ∀k ∈ KT (3.22)

xtdk, x
t
dr, τ

t
k ∈ {0, 1} (3.23)

In this formulation, Constraints (3.20) and (3.21) ensure that each driver or MST can be
matched only once. Constraint (3.22) guarantees that any task request will be assigned when505

there are valid bidders for it.
As previously discussed, Type-B vehicles are considered to be ‘redundant’ vehicles if they

fail to match any rider in phase T1. These vehicles are eligible to participate in both the
trip matching and MST assignment problems in phase T3. To motivate Type-B drivers, the
ride-hailing platform may prioritize MSTs in phase T3. In other words, the MST assignment510

problem is solved first. Any unoccupied Type-A and Type-B drivers are subsequently matched
to trip requests by addressing the trip matching problem, while those who win the auction
are filtered out.

3.3.3 Payment determination

After assigning task requests to drivers, the next problem is to determine a final earning for515

each driver, which is calculated by the ride-hailing platform. A straightforward payment rule
derives from the one-sided VCG mechanism. In the VCG-MST mechanism, the final earning
of each driver d is determined by:

ptd = vtdk + (Π(D̃t)−Π(D̃t\ {d})) ∀d ∈ D̃t (3.24)

where Π(D̃t) and Π(D̃t\ {d}) represent the optimal objective function value with and without
driver d. A driver’s utility utd is calculated as the difference between the earning and true520

valuation:
utd = ptd − vtdk (3.25)

Algorithm 2 summarizes the aforementioned winner selection and payment determination
process, and shows how to implement the trip matching and task assignment in the phase T3.

The VCG mechanism is proved to satisfy favorable economic properties such as Individual
Rationality (IR), Allocative Efficiency (AE), and Incentive Compatibility (IC) (Krishna, 2009).525

In this study, the VCG-MST mechanism also satisfies these three properties.

Proposition 3.1. Individual Rationality Any driver who bids an MST would not get a
negative utility.

Proof. From the Eq.(3.24) and Eq.(3.25), the driver’s utility is Π(D̃t)−Π(D̃t\ {d}). If a driver
d∗ participates in sensing activity, the optimal value of

∑
k∈KT

∑
d∈D̃t

δtdkx
t
dk is at least not530

less than that of
∑

k∈KT

∑
d∈D̃t\{d∗} δ

t
dkx

t
dk, then we have Π(D̃t) ≥ Π(D̃t\ {d∗}), which leads

to utd∗ ≥ 0. This completes the proof.
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Algorithm 2: Coordinating the VCG-MST assignment mechanism within trip
matching

Input: The driver set Dt, the task request set KT , the rider set Rt, sensing cost saving
matrix W

Output: Trip matching result XDR, MST assignment result XWK, vector of payments to
MSTs p

1 Solve the MST assignment model to obtain the optimal solution XWK, the set of winners XW

and the set of selected task requests XK;
2 Calculate the optimal objective function value Π(D̃t);
3 Solve the trip matching model to obtain the optimal solution XDR, the set of matched drivers

XD and the set of matched riders XR;
4 for (d, r) ∈ XDR do
5 if d ∈ XW then
6 Search for another idle driver d2 who satisfies

d2 = argminj∈Dt\(XW∪XD)

{
Ljr

∣∣ Ljr ≤ Lub

}
;

7 if ∃d2 ∈ Dt\(XW ∪XD) then
8 replacing the incumbent driver d for rider r by d2;
9 else

10 XDR ← XDR\ {(d, r)}, XD ← XD\ {d}, XR ← XR\ {r};

11 for d ∈ XW do
12 Remove the row for driver d from the matrix W ;
13 Re-calibrate the MST assignment model to obtain the optimal objective function value

Π(D̃t\ {d});
14 Calculate the driver d’s payoff ptd = vtdk + (Π(D̃t)−Π(D̃t\ {d}));
15 Return XDR, XWK,p

Proposition 3.2. Allocative Efficiency When the model (3.19) achieves the optimal ob-
jective value, the VCG-MST auction mechanism for MST assignment achieves allocative effi-
ciency.535

Proof. The objective function Eq.(3.19) aims to maximize the saving on sensing cost. In this
MST problem, the VCG-MST auction mechanism operates as a price-only reverse auction,
as it solely collects bidding information from participants. We let x = {(i, j) | xij = 1}
be a feasible solution of the assignment model, and X be a set of all feasible solutions. If
there exists an optimal solution x∗ achieving x∗ = argmaxx∈X

∑
k∈KT

∑
d∈D̃t

δtdkx
t
dk, the540

assignment result is efficient. In this problem, the model (3.19) is always trying to find
the maximum objective value and optimal solution x∗, indicating that allocative efficiency is
achieved.

Proposition 3.3. Incentive Compatibility By the VCG-MST mechanism, submitting the
true valuation to the platform is a dominant strategy for any driver despite how other drivers545

submit their bids.
Proof. We assume that everyone in D̃t\{d} submits price bidding truthfully. If driver d truth-
fully submits the price bidding Bt

d, then the payoff is ptd = vtdk + (Π(D̃t) − Π(D̃t\ {d})). If
the driver d submits her bidding price B̂t

d ̸= Bt
d untruthfully, v̂tdk ̸= vtdk, then the payoff is

p̂td = v̂tdk + (Π̂(D̃t)−Π(D̃t\ {d})), and550

Π̂(D̃t) = δ̂tdk +
∑

j∈Kt\{k}

∑
l∈D̃t\{d}

δtljx
t
lj

is the new objective function value. In light of the Cheng et al. (2023), we assume that driver
d can be matched, and obtain a higher payoff by submitting untruthfully. Then, we have:

p̂td − vtdk > ptd − vtdk = Π(D̃t)−Π(D̃t\ {d}).
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Substituting for p̂td can get

v̂tdk + Π̂(D̃t)−Π(D̃t\ {d})− vtdk > Π(D̃t)−Π(D̃t\ {d})

⇒ v̂tdk + Π̂(D̃t)− vtdk + cqlqk − cqlqk > Π(D̃t)

⇔ δtdk − δ̂tdk + Π̂(D̃t) > Π(D̃t)

⇒ δtdk − δ̂tdk + δ̂tdk +
∑

j∈KT \{k}

∑
l∈D̃t\{d}

δtljx
t
lj > Π(D̃t)

⇒ δtdk +
∑

j∈KT \{k}

∑
l∈D̃t\{d}

δtljx
t
lj > Π(D̃t).

This contradicts that the optimal objective value is Π(D̃t) =
∑

j∈KT \{k}
∑

l∈D̃t\{d} δ
t
ljx

t
lj +

δtdk, indicating that the driver d cannot obtain higher payoff by submitting untruthfully. There-555

fore, the VCG-MST auction mechanism satisfies incentive compatibility.

4 A refine budget control mechanism for MST assignment
The VCG-based MST assignment mechanism offers a rational, efficient, and truthful approach
to assigning MSTs within the ride-hailing platform. However, the resulting assignment plan
may sometimes fail to meet budgetary requirements. Our numerical tests indicate instances560

where assigning MSTs to Type-B drivers proves to be more costly than utilizing dedicated
vehicles for certain tasks. This could lead to budget deficit for the ride-hailing platform,
thereby affecting the enthusiasm for incorporating mobile sensing services.

To address this challenge and maintain control over the overall budget, we propose a budget
control mechanism for MST assignment, refining the winner determination and payment rule565

of the VCG mechanism. Moreover, the refined budget control MST assignment mechanism
(RBC-MST) is also proved to satisfy some favorable economic properties.

4.1 Budget control for winner selection

The allocation of the mobile sensing budget directly impacts the sensing capabilities of the ve-
hicles. A straightforward but potentially risky approach involves allocating the entire budget570

at once. Under this method, the budget for each cycle fluctuates throughout the decision-
making process as payments from previous bidding rounds are subtracted. However, this
approach may lead to substantial opportunity costs (Tafreshian and Masoud, 2022), particu-
larly because complete information regarding the number and locations of MSTs may not be
available initially.575

An alternative strategy involves proportionally allocating the budget across each decision-
making cycle for the MST assignment. After the assignment in each cycle is completed, the
remaining fund for that cycle is returned back to a central budget pool. The amount of fund
invested in each decision-making cycle is primarily determined by the numbers of sensing tasks
released during that cycle and all unallocated sensing tasks. Subsequently, in each decision-580

making cycle, the RBC-MST mechanism determines the winners and payoffs for the current
MST assignment based on the budget allocated to that cycle.

Let Kr
T denote the set comprising all unallocated sensing tasks up to the T -th decision-

making cycle and KT ⊆ Kr
T be the subset of sensing tasks released in the decision-making

cycle T . The partial budget ΩT for this cycle T is then calculated by:585

ΩT =
|KT |
|Kr

T |
(Ω−

T−1∑
i=0

Θi) (4.1)
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where Ω is the total budget used for MST assignment, and Θi is the actual expense on sensing
tasks in the decision-making cycle i and Θ0 = 0.

We are now ready to propose the following MST assignment problem by imposing an
additional budget constraint while minimizing the total sensing cost in the time period t ∈ T3.

[MST-P2]590

min Ψ′ =
∑
k∈KT

∑
d∈D̃t

vtdkx
t
dk (4.2)

s.t. Eqs.(3.15), (3.17),(3.20)− (3.23)

τ tk = 1, ∃vtdk < +∞, ∀d ∈ D̃t, k ∈ KT (4.3)∑
k∈KT

∑
d∈D̃t

vtdkx
t
dk ≤ ΩT (4.4)

Here, vtdk denotes the upper bound of driver d’s true valuation when bidding to MST
k. According to Equation (3.15), this upper bound depends on the relationship between the
drivers maximum stated valuation and private valuation. Specifically:

• If the drivers maximum stated valuation exceeds the private valuation, we have vtdk =
C + bldk.595

• Otherwise, vtdk = αldk + g(ldk).

However, imposing a budget constraint does not necessarily guarantee the feasibility of
model [MST-P2], as in practical computation, it is possible to encounter situations where∑

k∈KT

∑
d∈D̃t

vtdkx
t
dk > ΩT , thereby violating the budget constraint (4.4).

To address this issue, we solve the model [MST-P2] directly without initially considering600

constraint (4.4). There are two cases to consider. In the first case, if the budget constraint
(4.4) is verified to be feasible after solving the model, the solution can be accepted as optimal.
In the second case, if the budget constraint is violated, the assignment result is adjusted to
ensure compliance with the constraint. We will exclude the most “expensive” driver from the
set, identified as the one with the largest true valuation. Let WKt denote the tuple set of605

“winners” along with the MSTs assigned to them, then we have:

xtl∗j∗ = 0, (l∗, j∗) = argmax
(l,j)∈WKt

{vtlj
∣∣ ∑

(l,j)∈WKt

vtlj > ΩT }. (4.5)

The removed driver-MST pair is then added to a tabu list NKt, prohibiting its selection in
future iterations. The [MST-P2] is then resolved with respect to the NKt. This procedure
is iterated until the budget constraint is satisfied. If all drivers eligible for task k∗ are in the
tabu list, we may relax the constraint (4.3) based on the Equation (4.6).610

τ tk∗ =

{
1, if ∃vtdk∗ < +∞ and (d, k∗) /∈ NKt, ∀d ∈ D̃t

0, others
(4.6)

4.2 A tailored payment rule

As with the VCG-MST mechanism, we denote the set of successfully matched driver-task
pairs as WKt, with Wt representing the set of winners and Kt representing the set of task
requests. We propose the following payment rule for the selected drivers. Driver d’s payoff is
determined by:615

ptd =

vtdk, Ψ′(D̃t\{d}) < Ψ′(D̃t)

min

{
vtdk +

(
Ψ′(D̃t\{d})−Ψ′(D̃t)

)
, vtdk

}
, Ψ′(D̃t\{d}) ≥ Ψ′(D̃t)

(4.7)
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Assuming that X(D̃t\{d}) and X(D̃t) are solutions corresponding to the optimal objective
value Ψ′(D̃t\{d}) and Ψ′(D̃t), respectively. We also utilize the marginal benefit of the winner
d to calculate his/her payoff, but this payoff can not exceed the upper bound of d’s true
valuation. It is worth noting that the number of driver-MST pairs in X(D̃t\{d}) is less than
that in X(D̃t) when the inequality Ψ′(D̃t\{d}) < Ψ′(D̃t) holds. This is because the task k620

can not be assigned when excluding the driver d from D̃t. There are two cases leading to this
result, i.e., (1) driver d is the only eligible bidder for the task k; (2) all driver-MST pairs to
the task k are prohibited except for the driver d when solving the model [MST-P2]. In this
situation, we set the upper bound of the driver’s true valuation as the payoff.

The whole process is summarized in Algorithm 3.

Algorithm 3: Coordinating the RBC-MST assignment mechanism within trip
matching

Input: The driver set Dt, the MST set KT , the rider set Rt, the true valuation matrix V , the
budget ΩT

Output: Trip matching result XDR, task assignment result XWK, task payment p
1 NKt, XWK, XW, XK ← ∅;
2 flag ← True;
3 while flag do
4 Solve the [MST-P2] without considering budget constraint to obtain the optimal solution

WKt, the set of winners Wt and the set of selected task requests Kt;
5 if

∑
(d,k)∈WKt

vtdk > ΩT then
6 d∗, k∗ = argmax(d,k)∈WKt

{vtdk};
7 if ∀(d, k∗) ∈ NKt and vtdk∗ < +∞ then
8 τ tk∗ ← 0;
9 NKt ← NKt ∪ {(d∗, k∗)};

10 else
11 XWK ←WKt, XW ←Wt, XK ← Kt;
12 flag ← False;

13 Find the optimal solution XDR following the steps 3 to 10 of Algorithm 2;
14 for (d, k) ∈ XWK do
15 Re-calibrate the MST assignment model to obtain the optimal objective function value

Ψ′(D̃t\{d}) without considering the driver d;
16 Calculate the driver d’s payoff based on the tailored payment rule;
17 Return XDR, XWK,p

625

4.3 An illustrative example

In this subsection, we intend to use an illustrative example to simply clarify how to solve
MST assignment problem by using [MST-P2]. We assume that, in a time period t ∈ T3,
there are four drivers and three unallocated sensing tasks in current matching pool. Let
D̃t = {d1, d2, d3, d4} and KT = {k1, k2, k3} be the set of drivers and the set of sensing tasks,630

respectively. We randomly generate some true valuations and their upper bounds, which will
be used in model, and we assume the platform needs to determine the assignment result based
on the following matrix:

V =


20 9 +∞
+∞ 10 13
+∞ 8 15
+∞ +∞ 10

 , V =


22 10 +∞
+∞ 12 15
+∞ 10 17
+∞ +∞ 14


where V is a matrix of true valuations and V is a matrix of upper bounds of the true valuations.
It should be noting that only driver d1 bids for MST k1. According to our model, the MST635
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k1 must be assigned to the driver d1 due to the constraint (4.3).
When we do not consider the budget constraint (4.4), the optimal objective value and

solution are Ψ′
min = 20+8+10 = 38 and WKt = {(1, 1), (3, 2), (4, 3)}, respectively. Then, we

will consider two cases where the partial budget ΩT is equal to 50 or 40.
Case 1: ΩT = 50. In this case, the budget constraint is verified to be feasible due to640 ∑

(l,j)∈WKt
vtdk = v11 + v32 + v43 = 22 + 10 + 14 = 46 < 50. This solution is accepted as

optimal, and we then calculate each winner’s final earning based on the Equation (4.7):

• For winner d1, we find the minimum Ψ′(D̃t\ {d1}) = 18 < Ψ′(D̃t) = 38 because only
driver 1 bids for MST 1. Then, this driver’s final earning is the upper bound of the true
valuation p1 = v11 = 22.645

• For winner d3, the minimum Ψ′(D̃t\ {d3}) = 40 > Ψ′(D̃t) = 38, then the final earning is
p3 = min

{
v32 + (Ψ′(D̃t\ {d3})−Ψ′(D̃t)), v32

}
= min {8 + (40− 38), 10} = 10.

• For winner d4, the minimum Ψ′(D̃t\ {d4}) = 41 > Ψ′(D̃t) = 38, then the final earning is
p4 = min

{
v43 + (Ψ′(D̃t\ {d4})−Ψ′(D̃t)), v43

}
= min {10 + (41− 38), 14} = 13.

Case 2: ΩT = 40. In this case, the budget constraint is verified to be infeasible at the650

first time due to
∑

(l,j)∈WKt
vtdk = v11 + v32 + v43 = 22 + 10 + 14 = 46 > 40. Then, based on

the Equation (4.5), we let x11 = 0 and NKt = {(1, 1)}. In addition, according to Equation
(4.6), τ t1 must be equal to 0 after adding x11 = 0 into the model [MST-P2] because conditions
(1, 1) ∈ NKt, v21 = v31 = v41 = +∞ hold.

When solving the [MST-P2] again with the new constraint x11 = 0, we obtain the optimal655

solution and the budget constraint is verified to be feasible. The optimal objective value
and solution are Ψ′

min = 8 + 10 = 18 and WKt = {(3, 2), (4, 3)}, respectively. Moreover,∑
(l,j)∈WKt

vtdk = v32 + v43 = 10+ 14 = 24 < 40. This solution is accepted as optimal, and we
then calculate each winner’s final earning based on the Equation (4.7):

• For winner d3, the minimum Ψ′(D̃t\ {d3}) = 19 > Ψ′(D̃t) = 18, then the final earning is660

p3 = min
{
v32 + (Ψ′(D̃t\ {d3})−Ψ′(D̃t)), v32

}
= min {8 + (19− 18), 10} = 9.

• For winner d4, the minimum Ψ′(D̃t\ {d4}) = 21 > Ψ′(D̃t) = 18, then the final earning is
p4 = min

{
v43 + (Ψ′(D̃t\ {d4})−Ψ′(D̃t)), v43

}
= min {10 + (21− 18), 14} = 13.

4.4 Economic properties of RBC-MST mechanism

While the VCG-MST mechanism has some favorable properties, it generally does not meet an665

important property called “budget balance”. In fact, our proposed RBC-MST mechanism can
handle this problem well, though it may sacrifice the “allocative efficiency” because efficient
assignment results may be changed with the introduction of budget constraints. Previous study
has shown that no such mechanism can simultaneously satisfy the individual rationality (IR),
incentive compatibility (IC), allocative efficiency (AE) and budget balance (BB) (Krishna,670

2009). In the RBC-MST mechanism, we attempt to prove that the mechanism satisfies IR,
IC, and BB. These properties ensure that drivers benefit from serving sensing tasks, remain
truthful in auction bidding, and that the budget provided to the ride-hailing platform remains
non-negative. Establishing these three economic properties highlights the strong practical
applicability of the proposed mechanism.675

The proposed RBC-MST mechanism is proved to satisfy BB, IC, and IR properties. Ad-
ditionally, under the condition of prohibiting driver-MST pairs in the tabu list NKt (e.g.,
NKt = ∅), RBC-MST mechanism achieves the efficient allocation. Before proving the BB
property, we show the assignment mechanism satisfies Lemma 1.
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Lemma 1. For any valid true valuation submitted by a driver d ∈ D̃t, vtdk is always greater680

than or equal to vtdk.

Proof. Based on the Equation (3.15), there are two cases to consider.
(1) In the first one, we let vtdk = C + Bt

dldk > αldk + g(ldk), indicating that the driver d
submits the true valuation corresponding to the stated valuation. Then, according to (3.13),
we have vtdk = C +Bt

dldk ≤ C + bldk = vdk.685

(2) In the second one, we let vtdk = αldk + g(ldk) = (α+ µ)ldk − µl0 + fm + ξ ≥ C +Bt
dldk,

indicating that the driver d submits the true valuation corresponding to the private valuation.
If ldk ≥ C+µl0−fm−ξ

α+µ−b
, we have C + bldk ≤ (α + µ)ldk − µl0 + fm + ξ. According to the

definition of vtdk in the model [MST-P2], when C + bldk ≤ (α + µ)ldk − µl0 + fm + ξ, we can
obtain vtdk = (α + µ)ldk − µl0 + fm + ξ. Hence, vtdk is equal to vtdk. If ldk < C+µl0−fm−ξ

α+µ−b
,690

we have C + bldk > (α + µ)ldk − µl0 + fm + ξ. Similarly, we can obtain vtdk = C + bldk >
(α+ µ)ldk − µl0 + fm + ξ = vtdk.

In both cases, vtdk ≥ vtdk. This completes the proof.

Proposition 4.1. Budget Balance In each plan cycle, the actual expenditure incurred by
the RBC-MST mechanism is either less than or equal to the prescribed budget ΩT .695

Proof. Let the driver d’s true valuation be vtdk = max
{
C +Bt

dkldk, αldk + g(ldk)
}

at the opti-
mal solution WKt. With Lemma 1, vtdk ≥ vtdk always holds. Therefore vtdk is the upper bound
of the driver d’s true valuation.

By Equation (4.7), the actual payments satisfies:∑
(d,k)∈WKt

vtdk ≤
∑

(d,k)∈WKt

ptd ≤
∑

(d,k)∈WKt

vtdk.

Due to the constraints in [MST-P2], the true valuation of the selected winners satisfies700 ∑
(d,k)∈WKt

vtdk ≤ ΩT . Thus, we obtain∑
(d,k)∈WKt

ptd ≤
∑

(d,k)∈WKt

vtdk ≤ ΩT .

Thus, the actual payment in any decision-making cycle T is less than or equal to the
budget ΩT .

Proposition 4.2. Individual Rationality With the RBC-MST mechanism, every eligible
driver who submits bids will not incur negative utility.705

Proof. Let ΨWKt to be the corresponding value of the objective function of [MST-P2]. For
any driver-MST pair (d, k) ∈WKt, we have xtdk = 1.

When Ψ′(D̃t\{d}) ≥ Ψ′(D̃t), the utility of driver d satisfies

utd = ptd − vtdk = min

{
vtdk +

(
Ψ′(D̃t\{d})−Ψ′(D̃t)

)
, vtdk

}
− vtdk

= min

{(
Ψ′(D̃t\{d})−Ψ′(D̃t)

)
, vtdk − vtdk

}
≥ 0.

When Ψ′(D̃t\{d}) < Ψ′(D̃t), we have ptd − vtdk = vtdk − vtdk ≥ 0 by Lemma 1.
Therefore, each selected driver can attain non-negative utility, while the utility of any710

deselected driver is null. This completes the proof of the IR property.

Proposition 4.3. Incentive Compatibility Submitting a truthful bid is a dominant strategy
for any driver in the RBC-MST mechanism given the other drivers submit truthful bids.
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Proof. We may discuss a driver’s change in utility when submitting an untruthful bid. A
driver may be (1) selected, or (2) deselected for any MSTs when submits a bid truthfully.715

By Equation (4.7), there are three cases of the payment to any selected driver. The utility
in submitting an untruthful bid may also evaluated accordingly.

(1) Ψ′(D̃t\{d}) < Ψ′(D̃t). This case occurs only when any valid match pairs for the sensing
task k are in the tabu list. If d is excluded, the sensing task k may be left unassigned. In
this case, the driver d will obtain the upper bound of the own true valuation despite the bid.720

Thus, driver d’s utility remains the same.
(2) Ψ′(D̃t\{d}) ≥ Ψ′(D̃t) and Ψ′(D̃t\{d})−Ψ′(D̃t) > vtdk−vtdk. It means that the marginal

benefit of the driver d is above the valuation the upper bound of valuation minus true valuation.
The driver d who is selected will obtain the upper bound of the own true valuation. In this
case, the utility of driver d remains the same.725

(3) Ψ′(D̃t\{d}) ≥ Ψ′(D̃t) and Ψ′(D̃t\{d})−Ψ′(D̃t) ≤ vtdk − vtdk. Assuming that the driver
d can obtain higher payoff p̂td by untruthful submission. Then, we have:

p̂td − vtdk > ptd − vtdk = Ψ′(D̃t\{d})−Ψ′(D̃t)

Substituting p̂td = v̂tdk +
(
Ψ′(D̃t\{d})− Ψ̂′(D̃t)

)
into above inequality, we get:

v̂tdk +
(
Ψ′(D̃t\{d})− Ψ̂′(D̃t)

)
− vtdk > Ψ′(D̃t\{d})−Ψ′(D̃t)

⇒ v̂tdk − Ψ̂′(D̃t)− vtdk > −Ψ′(D̃t)

⇒ Ψ̂′(D̃t) + vtdk − v̂tdk < Ψ′(D̃t)

⇔ v̂tdk +
∑

j∈KT \{k}

∑
l∈D̃t\{d}

vtljx
t
lj + vtdk − v̂tdk < Ψ′(D̃t)

⇒ vtdk +
∑

j∈KT \{k}

∑
l∈D̃t\{d}

vtljx
t
lj < Ψ′(D̃t)

It contradicts that Ψ′(D̃t) = vtdk +
∑

j∈KT \{k}
∑

l∈D̃t\{d} v
t
ljx

t
lj is optimal objective value.

Therefore, the utility of any selected driver d can not increase by untruthful bidding.730

We may now discuss the utility change of any deselected driver when submits an untruthful
bid. There are two cases for these drivers.

(1) When the driver d overbids, the valuations to all tasks increase. The optimal driver-
MST pairs remain unchanged, which means that the driver d is still deselected. In this case,
the utility of driver d remains zero.735

(2) When the driver d underbids, the valuations to all tasks decrease. As the bid contin-
uously decreases, d may take over task k from the initially assigned driver l, whose valuation
to the task is vtlk. Let vtdk, v̂

t
dk denote driver d’s true valuation and false valuation to task k,

respectively. When v̂tdk > vtlk, the driver d is still not selected and the utility remains the
same. When v̂tdk ≤ vtlk, d replaces l as the selected driver, and we have v̂tdk ≤ vtlk ≤ vtdk ≤ vtdk.740

Let the sum of the other driver-MST pairs’ true valuations be Ψ−k. Then d’s payoff could be
calculated by Equation (4.7):

p̂d = min
{
v̂tdk +

(
Ψ̂′(D̃t\{d})− Ψ̂′(D̃t)

)
, vtdk

}
= min

{
v̂tdk +

(
vtlk + Ψ−k − (v̂tdk + Ψ−k)

)
, vtdk

}
= min

{
vtlk, v

t
dk

}
= vtlk ≤ vtdk

The payoff of driver d is less than the own true valuation vtdk when submitting untruthfully.
In this case, the utility of driver d is negative.

Thus, submitting truthfully to the platform is a dominant strategy for either a selected or745

a deselected driver. This completes the proof.
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5 Computational experiments
We conducted numerical tests using a large-scale instance generated from New York City taxi
data. Initially, we assessed the performance of both the VCG-MST and RBC-MST mechanisms
across various scenarios. Following this, we examined how taxi fleet size and the ratio between750

the two types of taxis impact the completion rate of sensing tasks. Lastly, we investigated the
average payoffs for both Type-A and Type-B drivers under different bidding bounds, aiming
to determine the willingness of Type-B drivers to undertake MSTs.

All algorithms presented in this article were implemented in Python 3.10, and integer
programming problems were solved using Gurobi 10.0.0.755

5.1 Description of experimental data and parameter settings

We chose the Manhattan borough of New York City as the testing area for our numerical
experiments. Taking advantage of yellow taxi trip records from January 3rd to January
6th, 2022, sourced from the NYC Taxi and Limousine Commission (TLC) (NYC Taxi and
Limousine Commission, 2022), we inferred estimated cruising times for calculating opportunity760

costs in the trip matching process. To assess the performance of the proposed mechanisms,
we employed trip records from January 7th, 2022, spanning two hours.

To simplify calculations, we converted the area IDs of pick-up and drop-off locations for
each trip record into network node IDs corresponding to the respective area. To test the per-
formance of mechanisms under different trip demand scenarios, we extracted low trip demand765

scenarios (1,000 trip requests during the time horizon) and high trip demand scenarios (2,000
trip requests during the time horizon) from the raw data using standard sampling techniques.
It is worth noting that the extracted trip requests is a subset of the actual trip requests.
Meanwhile, we computed the average origin-destination (OD) distance for all trip requests.
The value is around 3km. Thus, we set l0 ≈ 3 km.770

The overall time horizon was set to 2 hours. Type-A taxi operations were scheduled every
30 seconds, while Type-B taxi planning cycles were set at 5 minutes. Each cycle was divided
into 3 phases as described in Section 3: ride-hailing task matching T1, mobile sensing task
bidding T2, and mobile sensing task assignment T3. The durations of these phases were 3
minutes, 1.5 minutes, and 30 seconds, respectively.775

We randomly selected the locations of 80 MSTs within the study area. Figure 5 displays
the heat map of trip demand scenarios and the locations of MSTs within the Manhattan road
network. Additionally, we randomly placed the depot of dedicated vehicles within the area to
facilitate distance calculations between the dedicated vehicles and the MSTs. Furthermore,
in our experiment, we let the service time be ts = 2.5 minutes when a Type-B driver arrives780

at a PoI marked on the MST. We can roughly estimate the constant time cost in executing
sensing task ξ ≈ αV ts = 2× 35× 2.5×60

3600 = 2.92. Table 2 shows other parameter values.

Table 2: Values of parameters

Parameters Values Parameters Values

psr 12 units α 2 units/km
β1 1.70 units/km b 2 units/km
β2 0.50 units/min b 4 units/km
Ls
0 3 km µ 1 unit/km

ts0 10 min cq 8 units/km
Lub 2 km C 15 units
V 35 km/h l0 3 km
fm 7.5 units
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Figure 5: The low trip demand scenario, the high trip demand scenario and the locations of
selected PoIs.

5.2 Performance of the VCG-MST and RBC-MST under different travel
demands

We begin by evaluating the performance of the two mechanisms under different levels of travel785

demand. The total number of vehicles remains fixed at 140, while the ratio between the two
types of vehicles varies across the tests. After executing the coordination strategy, three key
indices are calculated: the social surplus, the remaining budget, and the completion rate of
MSTs by taxis.

In this study, we define the social surplus as the difference between the total fixed cost of790

using dedicated vehicles to complete tasks and the total expense on sensing tasks. Essentially,
it reflects the combined interests of the data user and the ride-hailing platform. For data user,
social surplus directly represents the reduction in sensing cost that data user can achieve. For
ride-hailing platform, social surplus indirectly reflects the potential benefit it can derive from
collaborating with the data user. In other words, achieving higher social surplus benefits both795

parties, which necessitates reducing sensing cost to accomplish. The social surplus (SS) can
be calculated as follows:

SS =
∑
T∈T

∑
(d,k)∈WKT

(cqlqk − pTdk), (5.1)

where cqlqk denotes the fixed cost of utilizing a dedicated vehicle to complete the sensing
task k, and pTdk represents the expense by assigning the sensing task k to driver d during the
decision-making cycle T .800

The remaining budget quantifies the deficit or revenue of the ride-hailing platform in the
MST business. Let RB represent the remaining budget at the end of the time horizon, and Ω
be the initial budget provided in advance. RB can be calculated as follows:

RB = Ω−
∑
T∈T

∑
(d,k)∈WKT

pTdk. (5.2)

The completion rate of MSTs by taxis gauges the appeal of taxi-based mobile sensing to
the data user, indicating the extent to which the taxi fleet can substitute dedicated vehicles.805

Let CR represent the completion rate of MSTs, |WKT | denote the number of task requests
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assigned to drivers in decision-making cycle T , and |K| denote the total number of MSTs. CR
can be calculated as follows:

CR =

∑
T∈T |WKT |
|K|

. (5.3)

Due to the random nature of the inputs, we conducted 5 repeated experiments for both the
low-demand and high-demand cases, calculating the average of each index. Figure 6 compares810

the performance of the two MST assignment mechanisms under the low trip demand scenario.
It’s notable that the RBC-MST mechanism outperforms the VCG-MST mechanism in terms
of social surplus (SS) and remaining budget (RB), but performs slightly worse than the VCG-
MST mechanism in completion rate (CR). This discrepancy arises from the allocation rules
of the two mechanisms.815

(A1) Social surplus

(B1) Social surplus

(A2) Remaining budget

(B2) Remaining budget

(A3) Completion rate of task requests(%)

(B3) Completion rate of task requests(%)

Figure 6: Comparison of (A) RBC-MST and (B) VCG-MST mechanism under the low trip
demand scenario

The RBC-MST mechanism regulates the number of MSTs commissioned in each planning
cycle based on the allocated budget. Consequently, some tasks, which might not be econom-
ically viable for the ride-hailing platform upon initial release, are deferred and assigned to
drivers in subsequent auctions. This approach enables the platform to generate more social
surplus and maintain a higher remaining budget. On the contrary, the VCG-MST mechanism820

assigns MSTs to drivers as long as their contributions to the objective are positive, following
a greedier approach. While this approach results in a higher task completion rate, it may lead
to excessive expenses on specific MSTs, potentially causing a deficit.

From Figure 6, we observe that the RBC-MST mechanism operates optimally when the
taxi fleet consists of 20 Type-B vehicles and 120 Type-A vehicles in this low trip demand825

scenario. Under these conditions, both the social surplus and completion rate reach their
maximum, and the remaining budget remains non-negative.

Similar numerical experiments were conducted for the high trip demand scenario, and the
results of the RBC-MST and VCG-MST mechanisms are summarized in Figure 7. Notably,
there are no significant differences between these two mechanisms across all three indices,830

although the RBC-MST mechanism performs slightly better in terms of social surplus and
remaining budget, but slightly worse in completion rate. This observation can be attributed
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to the fact that when travel demand is high, most Type-A and Type-B vehicles are allocated
to trip requests rather than MSTs.

(A1) Social surplus

(B1) Social surplus

(A2) Remaining budget

(B2) Remaining budget

(A3) Completion rate of task requests(%)

(B3) Completion rate of task requests(%)

su
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s

Figure 7: Comparison of (A) RBC-MST and (B) VCG-MST mechanism under the high
trip demand scenario

5.3 Impact of the vehicle fleet sizes835

In this subsection, we investigate the impact of taxi fleet sizes on the performance of the two
mechanisms. We measure the service level for riders by calculating the average trip matching
rate and average waiting time. Additionally, we evaluate the effectiveness of the coordinated
strategy for mobile sensing using the social surplus and the completion rate of MSTs. For these
experiments, we employ 20 Type-B vehicles in the taxi network, while the number of Type-A840

vehicles range from 40 to 160 with a step size of 20. Each experiment is repeated 5 times, and
the average value of each index is calculated and presented in Figure 8. It’s observed that the
trip matching rate generally increases and the average waiting time of riders decreases with
the increase in the number of Type-A vehicles. Furthermore, both mechanisms provide great
service level of trip matching as the size of vehicle fleet increases.845

Figure 9 illustrates the impact of the number of Type-A vehicles on the performances
of the MST assignment. In scenarios with low travel demand, the social surplus increases
with the number of available vehicles for both MST assignment mechanisms. However, this
increase plateaus when the number of Type-A vehicles reaches around 100, indicating that all
sensing tasks could be efficiently commissioned to the Type-B vehicles. Notably, the RBC-850

MST mechanism consistently yields a larger social surplus than the VCG-MST mechanism
when the number of Type-A vehicles is not less than 60, making it particularly attractive to
both the data user and the ride-hailing platform.

While a similar increasing pattern of the social surplus is observed in scenarios with high
travel demand, no mechanism demonstrates consistently superior performance across all tests.855

The VCG-MST mechanism achieves a higher completion rate than the RBC-MST mechanism.
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(L) Average trip matching rate (%)

(H) Average trip matching rate (%)

(L) Average waiting time (s)

(H) Average waiting time (s)

Figure 8: The impact of the various number of Type-A vehicles on trip matching in (L) low
travel demand scenario and (H) high travel demand scenario

(L) Social surplus

(H) Social surplus

(L) Completion rate of task requests (%)

(H) Completion rate of task requests (%)

Figure 9: The impact of the various number of Type-A vehicles on MST assignment in (L)
low travel demand scenario and (H) high travel demand scenario

27



5.4 Earning of the Type-A and Type-B drivers

Given the potential for generating high social surplus in scenarios with low travel demand,
we may first investigate the earning of the drivers operating in the taxi-based mobile sensing
business under these conditions. For this examination, we set the initial budget and fleet size860

to 2,000 and 140, respectively.
We might also wonder how to incentivize drivers to accept MSTs. As outlined in Table 2,

the bid value per unit distance for vehicles ranges from 2 to 7. The lower bound corresponds
to the unit income of Type-A drivers, while the upper bound is slightly smaller than the unit
cost of dedicated vehicles. We can further subdivide this range into smaller increments, such865

as [2,4], [3,5], [4,6], and [5,7]. Conducting 5 repeated experiments for each range of bounds,
we summarize the trip matching and MST assignment indices in Table 3. With increasing bid
bounds, the average earning for Type-B drivers rises, though at the expense of social surplus
and completion rate.

Table 3: The impact of performing sensing tasks under the low trip demand scenario

BD Ω NAB NB
Trip matching Task assignment AP-A AP-B

AWT (s) ATR (%) ACR (%) ASS

U [2, 4] 2000 140

20 59.30 98.1 100 2454.14 92.64 143.79
25 61.41 98.1 100 2500.20 93.62 127.21
30 61.78 98.1 100 2548.14 95.26 114.00
35 63.30 98.1 100 2604.86 96.32 106.53
40 62.56 98.2 100 2602.37 98.04 101.09

U [3, 5] 2000 140

20 60.73 98.1 99.2 2309.17 92.79 147.10
25 59.77 98.1 99.8 2352.15 94.00 130.38
30 61.82 98.1 100 2419.38 94.79 119.97
35 62.25 98.1 100 2455.92 95.65 112.68
40 62.58 98.2 100 2474.72 98.79 102.39

U [4, 6] 2000 140

20 60.15 98.1 94.5 1993.21 92.24 150.64
25 61.04 98.1 98.2 2250.85 92.99 135.81
30 61.56 98.1 97.0 2168.99 95.48 119.31
35 62.09 98.1 99.8 2344.58 95.62 115.64
40 64.02 98.1 99.8 2383.82 98.57 104.61

U [5, 7] 2000 140

20 58.62 98.1 91.5 1882.55 91.83 152.62
25 60.15 98.1 94.8 2031.39 93.64 132.74
30 60.81 98.1 96.0 2116.25 95.72 118.84
35 63.30 98.1 97.0 2202.87 97.22 110.41
40 62.76 98.1 98.2 2227.72 97.58 108.19

Notes:
1. BD: the bounds of bids, NAB : the total number of vehicles, NB : the number of Type-B vehicles.
2. AWT: average waiting time, ATR: average trip matching rate, ACR: average completion rate, ASS: average social
surplus.
3. AP-A: average earning of Type-A drivers, AP-B: average earning of Type-B drivers.

Figure 10 depicts the average earnings of Type-A and Type-B drivers across these exper-870

iments. When the count of Type-B vehicles is 30 or fewer, and the bid prices fall within the
interval [2, 4], Type-B drivers stand to earn significantly more than their Type-A counterparts
by undertaking sensing tasks. Furthermore, the increment in the number of Type-B drivers
doesn’t markedly impact the earnings of Type-A drivers.

We conducted similar experiments in the high-demand scenario, and the key indices of trip875

matching and MST assignment are presented in Table 4. We observe that when the parameters
are varied, the earnings trend for Type-A drivers is similar to that in the low-demand scenario.
However, in scenarios where the number of Type-B vehicles is low, particularly in quantities
equal to 20, The earning of Type-B drivers may not differ significantly from that of Type-A
drivers, as depicted in Figure 11. This outcome is reasonable because, as shown in Table 4,880

when the number of Type-B vehicles is 20, the completion rate of sensing tasks is relatively
low (approximately 30%), causing the earning of Type-B vehicles to largely derive from trip
requests. Another interesting observation is that the average earning of Type-B drivers can

28



(a) The auction bid distribution follows U[2, 4] (b) The auction bid distribution follows U[3, 5] 

(c) The auction bid distribution follows U[4, 6] (d) The auction bid distribution follows U[5, 7] 

Figure 10: The average earning trend of Type-A drivers and Type-B drivers under the low
trip demand scenario (constant initial budget and fixed fleet size)

slightly increase with the rise in the number of Type-B drivers. This could be because, as
shown in Table 4, an increase in the number of Type-B vehicles leads to a higher completion885

rate of sensing tasks. Given that sensing tasks provide higher earnings compared to trip
requests, completing a sufficient number of sensing tasks enables Type-B drivers to achieve
greater earning. Moreover, the abundant availability of trip requests in the market ensures that
Type-B drivers do not lose too many passenger service opportunities while fulfilling sensing
tasks. Consequently, Type-B drivers can benefit from both trip requests and sensing tasks,890

thereby enabling them to achieve higher earnings compared to Type-A drivers.

6 Discussions and Conclusion
This study presents an operational strategy for mobile crowd-sensing using ride-hailing taxis.
The strategy tailors task assignment rules for the two vehicle types in the ride-hailing system,
prioritizing rider service levels. We address the order assignment problem by matching riders895

to Type-A and Type-B drivers, employing an auction-based mechanism to assign MSTs to
‘redundant’ Type-B drivers who have been idle for a significant duration. To ensure the data
user’s benefit and incentivize ride-hailing platforms to engage in mobile sensing, we enhance the
VCG mechanism by introducing a budget balance rule for winner selection. Additionally, we
devise a novel payment rule to maintain platform budget balance. The RBC-MST mechanism,900

satisfying IC, IR, and BB properties, is developed as favorable for all ride-hailing system
stakeholders. Various scenarios are tested to evaluate the integrated operational strategy and
the RBC-MST mechanism. Results indicate that the proposed strategy achieves substantial
social surplus while maintaining a satisfactory completion rate.

Another noteworthy observation is the benefit the RBC-MST mechanism provides to Type-905

B drivers who are inclined to undertake sensing tasks in most scenarios. But in the high trip
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(a) The auction bid distribution follows U[2, 4] (b) The auction bid distribution follows U[3, 5] 

(c) The auction bid distribution follows U[4, 6] (d) The auction bid distribution follows U[5, 7] 

Figure 11: The average earning trend of Type-A drivers and Type-B drivers under the high
trip demand scenario (constant initial budget and fixed fleet size)

Table 4: The impact of performing sensing tasks under the high trip demand scenario

BD Ω NAB NB
Trip matching Task assignment AP-A AP-B

AWT (s) ATR (%) ACR (%) ASS

U [2, 4] 2000 140

20 103.39 96.0 33.25 675.73 160.64 161.67
25 106.02 95.9 50.5 1173.24 162.19 165.89
30 105.56 95.6 60 1355.34 162.39 167.01
35 107.25 95.8 61.75 1488.73 163.58 166.90
40 109.36 95.5 78.75 1885.15 164.20 170.72

U [3, 5] 2000 140

20 103.86 96.3 31.75 563.01 160.80 163.79
25 104.99 96.3 36.75 766.73 161.37 164.00
30 105.39 96.1 51.25 999.34 162.75 168.25
35 106.91 95.7 64.75 1365.66 163.29 170.04
40 108.02 95.2 78.5 1803.68 163.78 171.73

U [4, 6] 2000 140

20 102.99 96.1 28.5 564.13 160.58 162.14
25 105.14 96.3 37.5 699.55 161.90 165.08
30 108.55 96.1 49.5 973.06 162.96 167.14
35 105.35 95.7 57.5 1147.68 162.63 170.16
40 107.91 95.5 64.75 1222.36 163.27 170.56

U [5, 7] 2000 140

20 103.07 96.4 25.5 464.07 161.12 160.32
25 103.09 96.3 30.75 576.46 160.96 164.08
30 105.22 96.0 42 742.93 161.45 169.17
35 105.89 95.8 56.25 1085.71 163.15 170.13
40 106.66 95.8 59 1149.74 162.97 170.17

Notes:
1. BD: distribution of bidding, NAB : the total number of vehicles, NB : the number of Type-B vehicles.
2. AWT: average waiting time, ATR: average trip matching rate, ACR: average completion rate, ASS: average social
surplus.
3. AP-A: average earning of Type-A drivers, AP-B: average earning of Type-B drivers.
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demand scenario, Type-B drivers may only marginally increase their average earnings from
completing MSTs compared to serving riders. Additionally, they miss out on the opportunity
to serve more riders in busy travel hubs. This issue could be addressed by introducing more
Type-B vehicles into the ride-hailing system.910

Although the proposed operation strategy and MST assignment mechanism effectively
achieve our research objectives, there’s room to tailor the methodology for more realistic
scenarios. One direct extension could involve allowing Type-B drivers to handle both a ride-
hailing request and one or multiple MSTs simultaneously. With appropriate route planning,
a Type-B driver could efficiently complete MSTs during a detour while transporting a rider915

to their destination. This arrangement could potentially increase Type-B drivers’ average
earning and enhance their willingness to undertake MSTs. Fortunately, implementing this
concept is not difficult by introducing a tri-partite shareable network of drivers, MSTs, and
riders, as described in prior research (Alonso-Mora et al., 2017; Ge et al., 2021). Ideal drivers
can be selected by solving a similar matching problem as the one presented in Section 4 on920

this shareable network.
Another issue worthy of investigation is budget allocation across plan cycles. While this

paper discusses two rules–the one-shot rule and the proportionality rule–both are greedy and
may not ensure optimal budget allocation. Alternatively, the budget for each plan cycle could
be optimized by learning multi-day mobility and service patterns of drivers.925
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