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Abstract

More than 10 billion tons of construction and demolition waste (CW) are generated globally
each year, which has a non-negligible impact on the environment. In the recycling process
of the CW, government and the carrier are two main stakeholders. The carrier is responsible
for transporting the CW from production sites to back�ll sites or processing facilities, whose
main concern is the economic bene�ts and transport e�ciency. Meanwhile, the government,
as the regulator, focuses on minimizing pollution generated by the recycling system, which is
in�uenced by transport modes, shipment distances, and the types of processing facilities used.
This paper develops a bi-level optimization model to address these challenges. The upper-level
model optimizes the government's subsidy scheme, while the lower-level model focuses on the
carrier's recycling plan. With the introduction of the time-space network, the lower-level
model is formulated as a tailored minimum cost �ow problem and the upper-level problem as
a linear programming model. Due to the complex structure and large number of variables of
the problem, we design a hybrid heuristic method. A case study in Chengdu demonstrates
that the lower-level model could achieve a gap less than 0.43% within 58 seconds, and the
whole problem could be solved with a gap of less than 1.51% within 3.76 hours. Results show
that with an optimized subsidy scheme and recycling plan, pollution can be reduced by over
29.29% with a relatively small subsidy investment.

Keywords: Construction and demolition waste; Sustainable treatment; Minimum cost �ow
problem; Bi-level programming; Hybrid algorithm

1. Introduction

The global urbanization and urban renewal are leading to a signi�cant increase in con-
struction projects. With this comes a large amount of construction and demolition waste
(CW), more than 10 billion tons of CW are generated globally annually (Yazdani et al., 2021),
making it a major component of municipal solid waste. It accounts for 25-40% in developing
and developed countries (Lin et al., 2020). As the largest contributor, China generates more
than 3 billion tons of CW annually, the United States generates more than 600 million tons
annually, and the European Union generated 372 million tons in 2018 (Huang et al., 2018;
Zheng et al., 2024). Despite the enormous number, the recycling rate of the CW is quite small
compared with other types of urban waste. In China, only 5% of CW are recycled (Huang
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et al., 2018). Nonetheless, improper treatment can cause serious environmental hazards such
as soil contamination and degradation, air and water pollution, greenhouse gas emissions,
global warming, and severe health problems (Rathore and Sarmah, 2020). This highlights the
need for an e�cient, environmentally friendly CW recycling plan.

Three types of sites are integral to the recycling process of CW: production sites, back�ll
sites, and processing facilities (Chu et al., 2012; Yu and Han, 2025; Yazdani et al., 2021).
The contractor generates waste at production sites and then commissions carrier to transport
it and pays accordingly. The carrier's recycling plan signi�cantly impacts the environment,
in�uenced by transport modes and recycling methods. Diesel trucks are cheaper but more
polluting, while electric trucks are cleaner but more costly, making carriers favor diesel trucks
without government subsidies. Recycling methods also vary in environmental impact; some
waste can be sent directly to back�ll sites, while others require harmless treatment at facilities
before recycling (Chu et al., 2012). The processing facilities di�er in pollutant outputs due
to technological limitations. Carriers often prioritize convenience by selecting the nearest
facilities, regardless of environmental concerns.

The core of the recycling plan lies in scheduling truck movements among di�erent sites.
While most existing studies concentrate on CW generation, assessment, and macro-level man-
agement (Lu et al., 2017; Gálvez-Martos et al., 2018; Trivedi et al., 2023), relatively few have
focused on optimizing detailed transportation scheduling. For example, Chu et al. (2012)
improved transportation e�ciency by modeling the spatiotemporal �ow of trucks and CW
using a multi-commodity network �ow model. Yazdani et al. (2021) considered travel time
uncertainty and proposed a hybrid genetic algorithm to optimize vehicle routing. Chen et al.
(2024) incorporated pollution from transportation and processing into a mixed-integer bi-level
programming model.

Though existing studies o�er valuable insights into model formulation and algorithmic
design, several critical gaps in research remain. First, due to space constraints at opera-
tional sites, truck queuing and congestion are common in practice but rarely accounted for
in existing models, limiting their applicability. Second, the government's goal of minimizing
pollution often con�icts with the carrier's goal of pro�t, yet few studies have explored how
the government intervenes in the decision-making of the carrier. Overall, a uni�ed modeling
framework that jointly considers transportation e�ciency, environmental sustainability, and
economic incentives is still lacking.

This study aims to bridge these gaps by developing an economic, e�cient and environmen-
tally friendly scheduling method that incorporates the government's indirect in�uence through
subsidies. Penalties are not considered, as they can lead to irregularities, potentially worsening
safety and pollution issues (Beliën et al., 2014).

The main contributions of this paper are as follows.

1) To enhance transportation e�ciency, we formulate a tailored multi-vehicle minimum-
cost �ow model on a time-space network that optimizes the carrier's recycling plan and
maximize pro�t. The model improves solution e�ciency by representing site congestion
through service arcs, e�ectively modeling queues. Results from a large instance show
that the model can be solved by commercial solver within a short time.

2) To reduce environmental pollution and government expenditure on subsidizing the trans-
portation and processing of CW, this study formulates a bi-level optimization model,
with the government as the leader and the carrier as the follower. The lower-level model
is a multi-vehicle minimum-cost �ow model, while the upper-level model minimizes en-
vironmental pollution by optimizing To reduce environmental pollution and government
expenditure on subsidizing the transportation and processing of CW, this study formu-
lates a bi-level optimization model, with the government as the leader and the carrier as
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the follower. The lower-level model is a multi-vehicle minimum-cost �ow model, while
the upper-level model minimizes environmental pollution by optimizing government sub-
sidies.

3) We develop an e�ective hybrid heuristic algorithm to solve the complex bi-level opti-
mization model. The algorithm employs multi-objective particle swarm optimization
(MOPSO) to explore solutions for the upper-level problem, while iteratively solving the
lower-level problem to re�ne the best local optimum. It achieves a high-quality solution
with a 1.51% gap in a reasonable time of 3.76 hours.

2. Literature review

Dealing with CW is a global problem that requires a concerted e�ort from multiple entities.
Section 2.1 reviews the CW recycling process from a management perspective. Section 2.2
reviews studies that impose economic levers on CW management and presents research gaps.

2.1. CW management scheme

The framework of CW management can be divided into four stages: pre-construction, con-
struction, transportation, and disposal (Gálvez-Martos et al., 2018). At the pre-construction
stage, carriers need to prepare plans under the supervision of the government, such as esti-
mating waste production, evaluating environmental impacts, and developing operational plans
as well as economic drivers such as subsidies, �nes, and taxes. During construction, the main
considerations are reducing waste, reusing materials, storage, and sorting. The transportation
process is quite important yet di�cult to schedule. This stage is concerned with transportation
e�ciency, tra�c safety, environmental pollution, etc. The disposal stage is mainly responsi-
ble for the harmless treatment of CW. The authorities set strict regulations to avoid illegal
disposal (Chen et al., 2024).

Estimating the volume of CW is a prerequisite for developing a transport plan. CW pro-
duction estimation is widely studied in construction waste management and can be categorized
into three methods: site visits (SV), generation rate calculation (GRC), and classi�cation sys-
tem accumulation (CSA) (Lu et al., 2017). The choice of method depends on the speci�c
objectives and conditions. SV involves �eld surveys, which are realistic but costly and di�-
cult to replicate. GRC, the most common method, estimates CW based on waste generation
rates for speci�c activities or companies. It is simple and cost-e�ective, but less accurate.
CSA is more detailed, quantifying di�erent types of CW, and o�ers more reliable data at a
lower cost. Studies like Solís-Guzmán et al. (2009) and Llatas (2011) applied CSA for more
precise estimation, though some models are region-speci�c. Guerra et al. (2020) combined
4D-BIM for estimating concrete and waste. CSA provides e�ective, low-cost information for
various CW types, forming a solid foundation for optimizing construction processes and waste
management.

Transportation of CW is one of the most important and expensive processes in groundwork
due to the high volume of waste, time-sensitive production rate and processing cost, and
demand for heavy trucks (Aringhieri et al., 2018). Heavy trucks will a�ect the tra�c operation
of ordinary vehicles, inducing tra�c congestion as well as serious accidents (Wang et al., 2022a).
They also account for a large proportion of emissions which therefore poses a great challenge
to the carbon neutral and pollution reduction e�orts (Wijnsma et al., 2023). The complexity
of the transportation networks and designs can lead to ine�cient transportation.

Over the past decades, extensive research has been conducted on the transportation of
various types of waste (Wang et al., 2020, 2022b). However, studies speci�cally focusing on
the optimization of CW transportation remain relatively limited and vary in scope. Among
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a few related studies, Chu et al. (2012) aimed to maximize carrier pro�t by modeling the
spatiotemporal �ow of trucks and CW as a multi-commodity network �ow problem, and em-
ployed a genetic algorithm to improve transportation e�ciency. Yazdani et al. (2021) brought
the uncertainty of travel times into the model and developed a simulation-based optimization
approach using a genetic algorithm to optimize vehicle routing. Similarly, Yi et al. (2024) in-
corporated the uncertainty of CW generation and formulated an integer programming model
based on stochastic programming to optimize transportation plans. There are also a couple
of studies focusing on the empirical aspect of this problem. For example, based on a real-
world case in Hong Kong, Bi et al. (2022) identi�ed three critical issues in CW transportation:
suboptimal facility selection, disordered trip chains, and signi�cant underloading. To address
these challenges, the authors constructed an order-to-order distance matrix and proposed a
combined optimization strategy that simultaneously improved (1) facility selection, (2) order
sequencing, and (3) vehicle loading rates. Their results demonstrated that the integrated
strategy achieved the best performance, with facility selection contributing most signi�cantly
to the improvement. However, most studies have focused on operational e�ciency and ignored
environmental issues.

2.2. Economic leverage for CW management scheme

Economic leverage is a key method to in�uence carriers in waste transportation (Wang
et al., 2023, 2024). The EU introduced waste disposal charges in 1999, with fees for inert
materials like concrete and tiles set at 53 euros per cubic meter, while hazardous chemicals
cost 86 euros (Li et al., 2018). In Hong Kong, a waste disposal charge scheme has been in
place since 2006. A study by Hao et al. (2008) found that the scheme e�ectively reduced
waste production. Research on carriers' willingness to pay for treatment fees shows that while
it exceeds current rates, it is still lower than the government's expectations(Li et al., 2020).
Chen et al. (2024) suggested that many charging policies focus more on improving transport
e�ciency than reducing pollution, and that Hong Kong's program may have limited long-term
impact. Meanwhile, Elshaboury et al. (2022) noted that policies in China to reduce waste and
promote recycling have had little e�ect.

Compared to the evaluation of construction waste treatment fees, relatively fewer studies
have focused on the design of pricing and incentive mechanisms. Under normal operating
conditions, governments often prefer incentive schemes over penalties, as punitive measures
may induce non-compliance and lead to more severe pollution and safety issues (Beliën et al.,
2014; Wijnsma et al., 2023). Yuan and Wang (2014) pointed out that most regions in China
adopt empirically determined treatment fees, which have shown limited e�ectiveness. To
address this, they were among the �rst to employ system dynamics to simulate di�erent policy
scenarios and identify reasonable fee structures. Building on this, Jia et al. (2017) further
explored the e�ects of treatment fees on illegal dumping, recycling, and reuse, and proposed
an improved system dynamics method to determine an e�ective fee range. Alternatively, Zheng
et al. (2024) developed a di�erential game model to examine how government subsidies and
consumers' green preferences in�uence �rms' decisions and recycling rates, providing valuable
insights for the design of e�ective incentives and regulatory strategies. Going a step further,
Chen et al. (2024) proposed a treatment fee design method that incorporates carrier behavior
and external transportation impacts. A mixed-integer programming model was formulated to
revise existing fee structures and better align with environmental protection goals.

In summary, although existing studies have made important progress in model develop-
ment and policy design, the following problems remain unaddressed: (1) Most studies fail
to simultaneously consider the coordination among multiple trucks, multiple sites, and their
service capacities. As a result, truck queuing and congestion within sites are often overlooked,
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leading to suboptimal transportation plans; (2) Some studies focus solely on carrier-side ob-
jectives and neglect pollution emissions generated during transportation and processing; (3)
Many rely on system dynamics approaches to evaluate disposal fee policies from a macro
perspective, which limits their ability to capture the strategic interactions among di�erent
decision-makers. To address these gaps, we �rst develop a time-space network-based multi-
vehicle minimum-cost �ow model to optimize the carrier's recycling schedule. Building on
this, we propose a bi-level optimization model based on the Stackelberg game framework. By
designing di�erentiated disposal fee schemes, the model guides carriers toward more environ-
mentally sustainable decisions and provides theoretical support for the government to develop
re�ned incentive policies.

The following texts of this paper are organized as follows. Section 3 introduces the move-
ments of the trucks among di�erent types of sites and formulates the mathematical models.
Section 4 designs a solution algorithm and evaluation metrics. The case study and conclusions
are presented in Sections 5 and 6, respectively.

3. Mathematical formulations

This section begins by outlining the assumptions and setting of the research problem. Next,
the time-space network for truck movements is introduced, which serves as the foundation for
the carrier's problem, i.e., the lower-level model. Finally, the upper-level problem, formulated
as a liner programming model, aims to optimize the government's strategy by minimizing both
pollution and subsidy expenditure. The complete bi-level problem is presented at the end.

3.1. Problem statement

We develop a bi-level optimization model inspired by the Stackelberg game, where the gov-
ernment acts as the leader and the carrier as the follower. The government aims to minimize
pollution and subsidy expenditure, while the carrier focuses on maximizing pro�t. Speci�cally,
when a carrier transports CW to processing facilities, it is required to pay treatment fees. To
in�uence carriers' transportation decisions, the government may provide subsidies for speci�c
types of trucks (e.g., those that generate lower emissions during transportation) and for pro-
cessing facilities (e.g., those that can help reduce pollution). In turn, these transportation
decisions a�ect both pollution levels and government subsidies. The structure of the bi-level
model is illustrated in Fig. 1, and all parameters and variables are de�ned in Appendix A.

[Figure 1 near here]
We consider both the E electrical �eets Fe = {V1, ...,VE} and D diesel �eets Fd =

{VE+1, ...,VE+D}, where the number of truck in each �eet v ∈ Fe ∪ Fd is represented Nv.
Due to policy constraints, each truck is operated by a dedicated driver and runs for only one
planning period before taking a mandatory rest. Since the battery range of electric trucks
exceeds a single planning period, recharging is not a concern. Moreover, as trucks operate in
a full-load mode between designated loading and unloading sites, the problem di�ers substan-
tially from traditional vehicle routing problems in both structure and characteristics.

Consequently, we develop the truck movements across di�erent sites and periods as �ows in
a time-space network G = {N ,A}, where N is a set of nodes and A is a set of directed arcs on
the network as shown in Fig. 2. Node set includes three types within the system: processing
facilities P = {1, ..., P}, production sites S = {P + 1, ..., P + S}, and back�ll sites D =
{P +S+1, ..., P +S+D}, with the total number is S, P , and D respectively. We consider one
depot, represented as the set {0}. The planning period T = {0, 1, ..., T}, where T represents
the number of time intervals, ∆t represents time interval. To facilitate the mathematical
formulation of the model, we de�ne the virtual planning period T = {−1, ...,−T}, where T is
a given integer. Each node ni,t ∈ N represents site i ∈ {0}∪P∪S∪D in period t ∈ T ∪T . We
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assume that truck take ri,j time intervals to travel from area i to area j for i, j ∈ {0}∪P∪S∪D.
The �ow on the directed arc (ni,t−ri,j , nj,t) ∈ A represents the number of truck moving from

node ni,t−ri,j to node nj,t for i, j ∈ {0} ∪ P ∪ S ∪ D and t ∈ T ∪ T . Based on the real-world
situation, we categorize the truck movements between two nodes into three categories, i.e.,
fully loaded arcs, deadheading arcs, and service arcs. They are de�ned as follows.

[Figure 2 near here]

De�nition 1 (Fully loaded arc). A fully loaded arc (ni,t−ri,j , nj,t) ∈ Af represents the trip

that trucks loaded with waste at node ni,t−ri,j move to node nj,t to get unloaded, t ∈ T ,
i, j ∈ {0} ∪ P ∪ S ∪ D.

Speci�cally, fully loaded arcs include three categories depending on the conditions i, j: 1)
i ∈ S, j ∈ D, trucks transport waste from production sites to back�ll sites; 2) i ∈ S, j ∈ P,
trucks transport waste from production sites to processing facilities for harmless treatment or
storage, etc; 3) i ∈ P, j ∈ D, when waste generated from production sites is not su�cient to
meet the needs of back�ll sites, trucks will transport waste from processing facilities to back�ll
sites for pit �lling.

De�nition 2 (Deadheading arc). A deadheading arc (ni,t−ri,j , nj,t) ∈ Ad represents the trip

in which trucks travel from node ni,t−ri,j to node nj,t in empty, t ∈ T , i, j ∈ {0} ∪ P ∪ S ∪ D.

Speci�cally, deadheading arcs include four categories depending on the conditions i, j: 1)
i ∈ {0}, j ∈ P ∪ S, at the beginning of the planning period, the trucks travel from the depot
to production sites or processing facilities to load waste; 2) i ∈ P ∪ D, j ∈ {0}, at the end of
the planning period, trucks travel from back�ll sites or processing facilities to the depot for
rest; 3) i ∈ D, j ∈ P ∪S, trucks travel to production sites or processing facilities to load waste
after unloading at back�ll sites; 4) i ∈ P, j ∈ S, similar to above, trucks travel to production
sites to load waste after unloading at processing facilities.

De�nition 3 (Service arc). A service arc (ni,t1 , ni,t2) ∈ As represents the waiting phase in

which trucks arrive at node ni,t1 and then moves to node ni,t2 , i ∈ {0}∪P ∪S ∪D, t1, t2 ∈ T .
In other words, the trucks stay at site i for one time intervals ∆t.

Upon arrival, trucks queue, load (or unload), check, clean, and then depart. The total
service time depends on the site's capacity. For simplicity, we assume the service time is a
time interval ∆t, which is typically longer than the actual service time, providing a bu�er
for travel and delays. Similar assumptions are used in transportation planning (Carey and
McCartney, 2003). Thus, the service arc (ni,t−1, ni,t) ∈ As represents the waiting phase where
trucks arrive at node ni,t−1, stay for ∆t, and then depart from node ni,t, with i ∈ P ∪ S ∪ D
and t ∈ T .

Except for the three types of arcs mentioned, all other arcs inA have a �ow of 0, represented
as the set A0. We de�ne I = {f, d, s, 0}, so that A = ∪∀e∈IAe and Ae1 ∩ Ae2 = ∅ for
e1 ̸= e2, e1, e2 ∈ I. We then formulate an integer programming problem based on the time-
space network in Fig. 2 to maximize the carrier's pro�t.

3.2. The strategy of the carrier

In this section, we formulate a model based on the time-space network G to maximize
the carrier's pro�t (or equivalently, minimize the negative of the carrier's pro�t), with three
components: 1) Fixed cost, where C0,v is the �xed cost per truck in �eet v ∈ Fe∪Fd, covering
the driver's salary, truck maintenance, etc. (Beliën et al., 2014). 2) Travel cost, where C1,v is
the average cost per truck in �eet v for traveling one time interval ∆t, mainly covering fuel
or electricity costs. 3) Revenue from waste transport, with a unit price of C2 CNY per tonne.
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However, if the waste is sent to processing facilities, the carrier incurs an additional treatment
fee, which is either a �xed market price y′ or a variable fee, discussed in Section 3.3.2. The
task volume for each planning period is known in advance, and CW accumulation costs on-site
are excluded.

We de�ne decision variable xi,j,v,t as the �ow of �eet v ∈ Fe ∪ Fd from node ni,t ∈ N to
another node nj,t+ri,j ∈ N at time t ∈ T ∪ T . All of the notations are shown in Appendix A,
and the mathematical model is as follows:

[M1]

Min f(x) =

�xed cost︷ ︸︸ ︷∑
v∈Fe∪Fd

∑
j∈P∪S∪D

∑
t∈T

C0,vx0,j,v,t

+

travel cost︷ ︸︸ ︷∑
v∈Fe∪Fd

∑
i∈P∪S∪D

∑
j∈P∪S∪D

∑
t∈T

C1,vri,jxi,j,v,t

−

revenue from transporting CW︷ ︸︸ ︷
(

∑
v∈Fe∪Fd

∑
i∈S∪P

∑
j∈D

∑
t∈T

C2Qvxi,j,v,t +
∑

v∈Fe∪Fd

∑
i∈S

∑
j∈P

∑
t∈T

(C2 − y′)Qvxi,j,v,t)/1, 000;

(1)

Subject to:∑
j∈P∪S∪D

∑
t∈T

x0,j,v,t ≤ Nv, ∀v ∈ Fe ∪ Fd; (2)

∑
j∈P∪S∪D

∑
t∈T

x0,j,v,t −
∑

i∈P∪S∪D

∑
t∈T

xi,0,v,t = 0,∀v ∈ Fe ∪ Fd; (3)

∑
i∈{0}∪P∪S∪D

xi,j,v,t−ri,j−1 −
∑

i∈{0}∪P∪S∪D

xj,i,v,t = 0,∀j ∈ P ∪ S ∪ D,∀v ∈ Fe ∪ Fd, ∀t ∈ T ;

(4)∑
i∈{0}∪P∪S∪D

∑
v∈Fe∪Fd

xi,j,v,t−ri,j ≤ Bj , ∀j ∈ P ∪ S ∪ D, ∀t ∈ T ; (5)

∑
j∈P∪D

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t/1, 000 = qsi, ∀i ∈ S; (6)

∑
i∈P∪S

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t/1, 000 = qdj , ∀j ∈ D; (7)

xi,j,v,t = 0,∀i ∈ {0} ∪ P ∪ S ∪ D, ∀j ∈ {0} ∪ P ∪ S ∪ D, ∀v ∈ Fe ∪ Fd, ∀t ∈ T ; (8)

xi,j,v,t = 0,∃H ∈ {{0},P,S,D}, ∀i, j ∈ H, ∀v ∈ Fe ∪ Fd, ∀t ∈ T ; (9)

xi,j,v,t ∈ {0, 1, ..., Bj}, ∀i, j ∈ {0} ∪ P ∪ S ∪D,∀v ∈ Fe ∪ Fd, ∀t ∈ T ∪ T . (10)

Constraint (2) ensures that the total number of trucks traveling from the depot to the
sites is less than the total number of trucks in the �eet. Constraint (3) ensures that the
number of trucks traveling from the depot equals the number of trucks returning to the depot.
Constraint (4) indicates that the node �ow is conserved. Constraint (5) restricts the maximum
number of trucks arriving at a site simultaneously to avoid congestion. Constraint (6) ensures
that the CW generated from each production site is fully transported. Constraint (7) ensures
that the needs of each back�ll site are satis�ed. Constraints (8) and (9) �lter infeasible
transport arcs. Constraint (10) is an integer constraint that the upper �ow limit should be
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equal to the operating capacity of the operating area. Solving the model [M1] generates an
e�cient scheduling for the carrier.

3.3. The strategy of the government

The pro�t objective for subsidizing is straightforward. We �rst demonstrate how the
pollution related objective is computed in Section 3.3.1 and present the full bi-level model in
Section 3.3.2.

3.3.1. Calculate method of pollution

Pollution from CW transportation consists of two components: emissions from diesel trucks
during transportation and pollution from waste treatment at processing facilities. To improve
realism, truck emissions are typically estimated using the Comprehensive Modal Emissions
Model (CMEM) (Demir et al., 2014). Based on this model, the Fuel Consumption Rate
(FCR) is given by:

FCR =
ξ(kNV + P0/η)

κ
, (11)

where ξ is the fuel-to-air mass ratio, k is the engine friction factor, N and V denote the
engine speed and engine displacement, respectively. The parameters η and κ are constants
representing e�ciency and the heating value, respectively. P0 is the second-by-second engine
power output (in kilowatts) and can be calculated as:

P0 =
Pt

ηt
+ Pa, (12)

where ηt denotes the truck drive train e�ciency, and Pa is the engine power requirement
associated with the operating losses of the engine and the operation of truck accessories (e.g.,
air conditioning). Pa is typically assumed to be 0 (Demir et al., 2011). Pt represents the total
traction force, which is the force generated by the friction between the truck tires and the road
surface. Pt can be calculated as follows:

Pt =
(Mvτ +Mvgsinδ + 0.5faφAu+Mvgfrcosδ)u

1, 000
, (13)

where Mv is the truck's total weight in feet v ∈ Fe ∪ Fd, including both the unloaded weight
(Qv) and rated load (Qv). τ is acceleration, g is gravitational acceleration, and δ is the
road angle. The coe�cients fa and fr represent aerodynamic drag and rolling resistance,
respectively. φ is air density, and A is the truck's frontal area. u is the truck's speed. For
simplicity, Demir et al. (2014) de�nes λ = ξ

κθ , γ = 1
1,000ηtη

, α = τ + g sin δ + gfr cos δ, and

β = 0.5fdφA, where θ is the fuel conversion factor from gram
s to liter

s , and ξ is typically
assumed to be 1 (Demir et al., 2011). Thus, the pollution value (Fuel Consumption, FC) for a
diesel truck v ∈ Fd over a distance d is a function of speed u and total weight M = Qv +Qv:

FC(u,M) =
λ(kNV +Qvγαu+Qvγαu+ βγu3)d

u
, ∀v ∈ Fd. (14)

Pollution from processing facilities primarily depends on the facility's capacity and the
volume of CW processed. The pollution generated by the harmless treatment of one tonne of
CW at a facility j ∈ P is de�ned by the pollution factor hj . Therefore, the pollution value for
processing a truckload of CW from �eet v ∈ Fe ∪ Fd at facility j ∈ P is expressed as:

HTC = hjQv, ∀j ∈ P,∀v ∈ Fe ∪ Fd. (15)
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3.3.2. Mathematical formulation

The objective of the upper-level problem is to minimize pollution induced by CW transport
and processing while minimizing the government subsidies. The compound objective function
could be derived from (14) and (15). The lower-level problem corresponds to [M1]. The
decision variables for the upper-level problem are yj,vs, representing the treatment fees for
the harmless treatment per ton of CW carried by �eet v ∈ Fe ∪ Fd at processing facility
j ∈ P . They form input parameters to the lower-level problem. The decision variable for the
lower-level problem is xi,j,v,t, and the optimal solution for the lower-level problem is denoted
by x′i,j,v,t, i, j ∈ {0} ∪ P ∪ S ∪D, v ∈ Fe ∪ Fd, t ∈ T ∪ T . The bi-level program is given by:

[M2]

Min F1(x
′|y) =

∑
i∈P∪S∪D

∑
j∈P∪S∪D

∑
v∈Fd

∑
t∈T

kNV λdi,jx
′
i,j,v,t/u

+
∑

i∈P∪S∪D

∑
j∈P∪S∪D

∑
v∈Fd

∑
t∈T

Qvγλαi,jdi,jx
′
i,j,v,t

+ (
∑
i∈S

∑
j∈P∪D

∑
v∈Fd

∑
t∈T

Qvγλαi,jdi,jx
′
i,j,v,t +

∑
i∈P

∑
j∈D

∑
v∈Fd

∑
t∈T

Qvγλαi,jdi,jx
′
i,j,v,t)

+
∑

i∈P∪S∪D

∑
j∈P∪S∪D

∑
v∈Fd

∑
t∈T

βγλdi,jx
′
i,j,v,tu

2

+
∑
i∈S

∑
j∈P

∑
v∈Fe∪Fd

∑
t∈T

hjQvx
′
i,j,v,t;

(16)

Subject to:

yj,v ≥ PL,∀j ∈ P, ∀v ∈ Fe ∪ Fd; (17)

yj,v ≤ PU,∀j ∈ P, ∀v ∈ Fe ∪ Fd; (18)

where

x′ ∈ argmin{f ′(x,y) =
∑

v∈Fe∪Fd

∑
j∈P∪S∪D

∑
t∈T

C0,vx0,j,v,t

+
∑

v∈Fe∪Fd

∑
i∈P∪S∪D

∑
j∈P∪S∪D

∑
t∈T

C1,vri,jxi,j,v,t

−
∑

v∈Fe∪Fd

∑
i∈S∪P

∑
j∈D

∑
t∈T

C2Qvxi,j,v,t

−
∑

v∈Fe∪Fd

∑
i∈S

∑
j∈P

∑
t∈T

(C2 − yj,v)Qvxi,j,v,t};

(19)

Subject to:

Constraints (2)-(10).

Constraint (17) limits the treatment fees to the government's budget, with PL representing
the minimum acceptable price. Constraint (18) sets the maximum price, PU , acceptable to the
carrier; exceeding this may lead to illegal shipment or processing risks (Beliën et al., 2014).
Constraint (19) minimizes the negative of the carrier's pro�t (i.e., maximize the carrier's
pro�t), derived from function (1) by replacing y′ with the variable yj,v, j ∈ P, v ∈ Fe ∪ Fd.
Model [M2] has the following property:

Property 1. As government subsidies increase, the objective of model [M2] is non-increasing.
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Property 2. The objective of [M2] has a natural lower bound, e.g., pollution will not be less

than 0.

The proofs are omitted because they are straightforward. Property 1 shows that the
government can reduce pollution by increasing the subsidy investment. However, Property 2
indicates that beyond a certain subsidy level, further increases do not result in additional
pollution reduction, leading to multiple optimal solutions for [M2]. Since the government aims
to minimize pollution with the least subsidy investment, we introduce the second objective
function to minimize subsidies. We assume that xM1

i,j,v,ts are the optimal solution of the model
[M1], the government subsidies (GS) is calculated as follows:

GS =
∑
i∈S

∑
j∈P

∑
v∈Fe∪Fd

∑
t∈T

y′Qvx
M1
i,j,v,t −

∑
i∈S

∑
j∈P

∑
v∈Fe∪Fd

∑
t∈T

yj,vQvxi,j,v,t (20)

where
∑

i∈S
∑

j∈P
∑

v∈Fe∪Fd

∑
t∈T y′Qvx

M1
i,j,v,t represents the origin total treatment fees with-

out subsidies, while
∑

i∈S
∑

j∈P
∑

v∈Fe∪Fd

∑
t∈T yj,vQvxi,j,v,t represents the actual total treat-

ment fees paid by the carrier under the subsidy scheme. Since y′, Qv (v ∈ Fd), and the waste
volume

∑
i∈S

∑
j∈P

∑
v∈Fe∪Fd

∑
t∈T xM1

i,j,v,t are constants, the former term remains constant.
Therefore, when implementing subsidy scheme, government subsidies are a linear function of
the carrier's actual total treatment fees (hereafter referred to as total treatment fees), with a
slope of −1.

To simplify the mathematical formulation, we directly minimize the negative of the total
treatment fees, which is equivalent to minimizing government subsidies. Accordingly, the
bi-level model is formulated as follows:

[M3]

Min F2(x,y) = −
∑
i∈S

∑
j∈P

∑
v∈Fe∪Fd

∑
t∈T

yj,vQvx
′
i,j,v,t; (21)

Subject to:

F1(x
′|y) = F1(x

∗
M2); (22)

Constraints (17)− (18);

where

x′ ∈ argmin{f ′(x,y)}; (23)

Subject to:

Constraints (2)-(10).

The objective function (21) minimizes the negative of total treatment fees (i.e., minimizes
the government subsidies). The function F1 in constraint (22) is derived from objective func-
tion (16), where x∗

M2 represents the optimal solution of x∗ acquired by solving [M2], and
F1(x

∗
M2) is optimal value for [M2]. Therefore, constraint (22) ensures that the total pollution

must be minimized. Constraint (23) is identical to constraint (19). Solving model [M3] yields
the economical and environmentally friendly scheduling.

Remark 1. Model [M3] could also be formulated as a tri-level optimization model, where the

upper level optimizing government subsidies, the middle level minimizing total pollution, and

the lower level maximizing the carrier's pro�t. However, this interpretation will complicate

the model structure and lead to sub-optimal solutions. Instead, we formulate it as a bi-level

model, where the upper level includes a primary objective F1 (total pollution) and a secondary

objective F2 (the opposite of the total treatment fees).
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4. Solution approach

Section 4.1 outlines a hybrid approach to address the bi-level optimization model [M3].
The method for calculating the model gap is detailed in Section 4.2.

4.1. Solution algorithm

Standard minimum-cost �ow models typically possess a totally unimodular constraint ma-
trix, ensuring that their linear relaxations yield integer optimal solutions (Ahuja et al., 1993).
Although our model [M1] does not strictly exhibit this property, its linear relaxation still
produces solutions that are very close to integer optima. As a result, high-quality solutions
can be e�ciently obtained using commercial solvers. Model [M2] serves as an intermediate
formulation in the derivation process and does not require independent solving. Model [M3]
is a bi-level optimization problem, where the upper level is a linear program and the lower
level is a relatively large-scale integer program, making exact solution computationally di�-
cult. While iterative approaches between levels have been proposed in prior studies (Soares
et al., 2021), our preliminary experiments reveal that such methods often require additional
constraints on the lower-level problem to ensure convergence. These modi�cations disrupt the
original network �ow structure, rendering commercial solvers less e�ective. Given that particle
swarm optimization is particularly suitable for problems with linear upper-level structures and
o�ers advantages in convergence speed and solution stability (Sinha et al., 2017; Soares et al.,
2020; Coello et al., 2004), we adopt a hybrid solution approach. Speci�cally, we use MOPSO
to solve the upper-level problem and a commercial solver for the lower level, striking a prac-
tical balance between solution quality and computational e�ciency. The algorithm �owchart
as shown in Fig. 3.

[Figure 3 near here]

4.1.1. Global framework

For the model [M1]. Since this model involves two types of trucks with di�erent load
capacities, it is di�cult to strictly satisfy constraints (6) and (7) in practical applications.
Therefore, we relax these constraints into the following inequalities:∑

j∈P∪D

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t/1, 000 ≥ qsi, ∀i ∈ S; (24)

∑
j∈P∪D

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t/1, 000 ≤ (1 + ϵ2)qsi, ∀i ∈ S; (25)

∑
i∈P∪S

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t/1, 000 ≥ qdj , ∀j ∈ D; (26)

∑
i∈P∪S

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t/1, 000 ≤ (1 + ϵ2)qdj , ∀j ∈ D. (27)

where ϵ2 represents a small tolerance parameter, allowing for a slight surplus after ful�lling
the demands qs and qd.

For the model [M3], the hybrid approach combines a multi-objective particle swarm
optimization (MOPSO) (Coello et al., 2004) to search for the solution to the upper-level
problem and a commercial solver to solve the lower-level problem. We �rst de�ne the to-
tal number of �eets V (i.e., V = E + D). The hybrid approach begins by randomly ini-
tializing a particle swarm of K particles yk = (yk1,1, . . . , y

k
1,V , y

k
2,1, . . . , y

k
j,v, . . . , y

k
P,V ), k =

1, . . . ,K, representing the treatment fee set by government at processing facility j ∈ P
for truck �eet v ∈ Fe ∪ Fd. Meanwhile, randomly initialize the corresponding velocity
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µk = (µk
1,1, . . . , µ

k
1,V , µ

k
2,1, . . . , µ

k
j,v, . . . , µ

k
P,V ) of each particle yk. We input each yk into the

lower-level problem of [M3] to obtain a solution xk, where x represents the vector of all deci-
sion variables of the lower-level problem. The pseudocode outlines the steps of the proposed
hybrid approach as follows:

Algorithm 1 Pseudocode of the Hybrid Approach

1: Initialize a particle swarm of K particles yk = (yk1,1, . . . , y
k
1,V , y

k
2,1, . . . , y

k
j,v, . . . , y

k
P,V ), ve-

locity µk = (µk
1,1, . . . , µ

k
1,V , µ

k
2,1, . . . , µ

k
j,v, . . . , µ

k
P,V ), k = 1, . . . ,K, j ∈ P, v ∈ Fe ∪ Fd

2: repeat
3: for k = 1 to K do
4: Repair yk to satisfy constraints (17) and (18), retaining each ykj,v to �ve decimal

digits
5: Input yk into the lower level problem and solve it using solver to obtain xk

6: Compute F1(x
k) and F2(x

k,yk) for each (xk,yk)
7: Update yk using MOPSO (introduced in Section 4.1.2)
8: end for
9: until G iterations are completed
10: Output: (xk,yk) with the best F1(x

k)

Line 4 of Algorithm 1 requires a repair routine that projects any ykj,v ∈ yk to PL or PU if
it violates constraint (17) or (18). The velocity of the particle is then updated by applying a
negative sign, prompting the particle to search in the opposite direction. Since the treatment
fee must be a �xed value in practice, even though ykj,v is treated as a continuous variable in
the model, it is truncated to �ve decimal places after initialization or updating.

4.1.2. Upper-level search based on MOPSO

The upper constraint (22) of model [M3] can create challenges in generating feasible
solutions yk, k = 1, . . . ,K, since it represents the objective of minimizing pollution in the
upper-level problem. To address this, we treat functions F1 and F2 as the primary and
secondary objective functions, respectively. Previous experiments have shown that heuristic
methods designed for single-objective optimization often focus solely on the primary objective
function F1, largely ignoring F2. To overcome this, we initially assign equal priority to both
F1 and F2 and use MOPSO to identify the Pareto optimal solution set. Afterward, we select
the solution with the minimum value of F1 from this set as the �nal high-quality solution.
This approach ensures that the solution converges toward the objectives of both F1 and F2.

Line 6 of Algorithm 1 calculates xk, yk, F1(x
k), and F2(x

k,yk). Here, yk is a particle in
MOPSO, while F1(x

k) and F2(x
k,yk) represent the �tness values corresponding to the two

objective functions for the current xk and yk. MOPSO iteratively adjusts the particles to
move toward optimal positions. The velocity µk of each particle is in�uenced by both its
personal best position (ybestk) and the position of the global best particle (gbestk). The
global best selection mechanism follows the approach by Coello et al. (2004), with the main
steps summarized as follows: (1) De�ne three arrays: EAY , EAF1, and EAF2, each of length
M , to store the positions of Pareto optimal particles and their corresponding objective function
values F1 and F2, respectively. (2) Divide the objective space into hypercubes by creating a
grid with HQ = m ×m cells. Each hypercube represents a region, and the particle density
in each region is used to calculate its distribution. (3) Use a roulette-wheel mechanism to
select a global best particle (gbestk) from EAY . Particles in less populated hypercubes are
given higher selection probabilities, ensuring that under-explored regions are prioritized (e.g.,
selecting EAY q[i] at iteration q). (4) If the number of Pareto solutions exceeds the length
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of EAY , particles in densely populated hypercubes are more likely to be deleted, preserving
diversity in the repository. For additional technical details, refer to Coello et al. (2004).

In any iteration q, the velocity component µk,q
j,v of the particle yk is updated according to

the following equation (Kennedy and Eberhart, 1995):

µk,q
j,v = ω0µ

k,q−1
j,v + ω1R1(pbest

k
j,v − yk,q−1

j,v ) + ω2R2(gbestj,v − yk,q−1
j,v ), (28)

where ω0 represents the inertia weight, ω1 and ω2 represent cognitive and social percep-
tual parameters; R1 and R2 are random numbers uniformly distributed in the interval [0,1];
gbestj,v = EAY [i]j,v, i ∈ {1, . . . ,M}. The new position of particle yk at iteration q is calcu-
lated using the following equation (Kennedy and Eberhart, 1995):

yk,q = yk,q−1 + µk,q. (29)

Particle swarm optimization converges quickly and easily falls into local optimal solutions,
so we introduce random perturbations into the algorithm based on study Soares et al. (2020).
If the solution does not change after G

′
iterations, the algorithm introduces perturbations

with probability pm, enhancing the exploration capability of the particles. Speci�cally, for each
particle yk, after being updated by Eq. (29) and before being repaired (Line 4 in Algorithm 1), a

perturbation ε is applied within the range [−σ (PU − PL) , σ (PU − PL)] , i.e., yk,qj,v ← yk,qj,v +ε.
The algorithm terminates when the di�erence between objective function values from two
consecutive iterations falls below a speci�ed threshold ϵ1, In other words, the following two
inequalities are satis�ed:

EAF q
1 [index]− EAF q−1

1 [index]

EAF q
1 [index]

< ϵ1, (30)

EAF q
2 [index]− EAF q−1

2 [index]

EAF q
2 [index]

< ϵ1, (31)

where EAF q
1 [index] = min{EAF q

1 [1], . . . , EAF q
1 [M ]}, EAF q

2 [index] is optimal under the con-
dition that EAF q

1 [index] is guaranteed to be optimal.

4.1.3. Accelerated lower-level problem solving

The time-space network graph G is a complete graph with an exponential number of edges
(Fig. 2), which places a signi�cant memory burden on the computer. However, most edges in
the graph have a value of 0. For instance, a truck does not travel from sites in P to other sites
in P, from S to S, or from D to D; likewise, a production site i ∈ S only transports waste to a
limited number of back�ll sites j ∈ D, or possibly just one. By removing these impossible edges
(those with a �ow rate of 0) to obtain support graph, the model size is greatly reduced. This
reduction allows the commercial solver to provide an exact solution in a reasonable amount of
time.

It is important to note that for each yk, there may be multiple possible solutions for
xk. However, in practice, the carrier is indi�erent to pollution and tends to select an xk

randomly (Liu et al., 2019). This randomness may lead to sub-optimal values for F1(x
k)

and F2(x
k,yk), which can in�uence the MOPSO algorithm when updating the particle posi-

tions (Soares et al., 2020). Therefore, incorporating a random selection strategy can enhance
the robustness of the model. Section 5.2 discusses the accuracy of the proposed method.

4.2. Optimality gap estimation and algorithmic evaluation

The upper and lower bounds of the model cannot be directly determined by the proposed
hybrid approach and require further discussion. This section provides a detailed analysis of the
upper and lower bounds of pollution and de�nes the utilization rate of government subsidies.
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4.2.1. Gap of pollution value

We de�ne x∗
M1 as the optimal solution of model [M1], which focuses on the carrier's pro�t

while ignoring environmental pollution. The following proposition holds:

Proposition 1. F1(x
∗
M1) is the upper bound of the pollution value F1 in model [M3].

Proof. Since x∗
M1 is the optimal solution of model [M1], it is also a feasible solution for model

[M3]. Therefore, F1(x
∗
M1) serves as an upper bound for the pollution value in model [M3].

F1(x
∗
M1) can be interpreted as the pollution generated by the carrier while transporting

CW without any subsidy measures. Therefore, the rate of pollution reduction (RoPR) can be
expressed as the gap between F1(x

∗
M3) and F1(x

∗
M1):

RoPR =
F1(x

∗
M1)− F1(x

∗
M3)

F1(x∗
M1)

× 100%, (32)

where x∗
M3 represents the solution obtained by solving model [M3] using the proposed hybrid

approach. If we require x to be feasible rather than optimal, we can relax the bi-level model
[M2] into a single-level model, known as the high point problem (Moore and Bard, 1990):

[M2-HPR]

minF1(x) (33)

subject to:

Constraints (2)− (10), (17), (18).

We de�ne x∗
HPR represents the optimal solution of model [M2-HPR]. The following propo-

sition holds:

Proposition 2. F1(x
∗
HPR) is the lower bound of F1 in model [M3].

Proof. F1(x
∗
HPR) is the lower bound that can be interpreted from two perspectives: 1) model

[M2-HPR] is a relaxation of model [M2]. 2) The objective function (33) and constraints (2)-
(10) do not contain the decision variable y, so constraints (17) and (18) can be removed
from the model [M2-HPR]. Observing models [M2-HPR] and [M1], we can see that they
represent the truck schedule developed by the carrier and the government under the same
operating conditions, respectively.

Therefore, the GAP of the objective function F1 in model [M3] is calculated as follows:

GAP_F1 =
F1(x

∗
M3)− F1(x

∗
HPR)

F1(x∗
HPR)

× 100%. (34)

4.2.2. E�ective subsidy rate of government

To reduce pollution, the carrier needs to change trucks' schedules. This will result in addi-
tional transportation costs, which should be compensated by the government. Although higher
subsidies initially reduce pollution, their e�ect diminishes with further increases, eventually
only raising the carrier's pro�t. The following formula measures the relationship between the
carrier's pro�t and the total treatment fees with subsidizing:

|F2(x
∗
M3)− F2(x

∗
M1)| = |f ′(x∗

M3,y
∗
M3)− f(x∗

M1)|+ ES, (35)

where the terms −f(x∗
M1) and −F2(x

∗
M1) represent the carrier's pro�t and the total treat-

ment fees, respectively, without any subsidies. These values are derived from solving model
[M1]. When high-quality subsidies are applied (corresponding to model [M3]), the carrier's
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pro�t and the total treatment fees are −f ′(x∗
M3,y

∗
M3) and −F2(x

∗
M3), respectively. There-

fore, |F2(x
∗
M3)−F2(x

∗
M1)|, |f ′(x∗

M3,y
∗
M3)− f(x∗

M1)|, ES represent the government subsidies,
ine�ective subsidies (i.e., increase in the carrier's pro�t), and e�ective subsidies, respectively.

To avoid ine�ective subsidies, we de�ne the E�ective Subsidy Rate (ESR) as an index to
evaluate the performance of model [M3] in achieving the objective function F2. The ESR
ranges from (0, 1], with values closer to 1 indicating a more e�ective subsidy scheme. The
ESR is de�ned as follows:

ESR =
ES

|F2(x∗
M3)− F2(x∗

M1)|
× 100%

=
|F2(x

∗
M3)− F2(x

∗
M1)| − |f ′(x∗

M3,y
∗
M3)− f(x∗

M1)|
|F2(x∗

M3)− F2(x∗
M1)|

× 100%.

(36)

5. Case study in Chengdu

5.1. Experiment settings

We conduct numerical experiments using real data from Chengdu. Chengdu is one of
China's new �rst-tier cities with a resident population of over 20 million. Currently, there
are more than 15,000 trucks in Chengdu city. Fig. 4 shows the frequency distribution of the
number of trucks owned by enterprises, with most enterprises owning fewer than 100 trucks.

[Figure 4 near here]
According to study Han et al. (2023), we consider a large case of 240 trucks that serves 30

sites in Longquanyi District, Chengdu (see Fig. 5), including 17 production sites, 10 back�ll
sites, and 3 processing facilities. We review government statistical reports and interview the
carrier to collect the parameters for the experiment. There are mainly 4 sets of parameters in
use, i.e., travel time-related, cost-related parameters, pollution-related, and hybrid approach-
related. The values of these parameters are depicted in Appendix B and are explained below:

[Figure 5 near here]
The distance d between each site is obtained via the AMap (2025). We take a planning

period of 10 hours with a time interval ∆t = 10 minutes, resulting in T = 60 planning
periods. It is di�cult to accurately measure the traveling time between sites due to the
uncertainty of tra�c conditions on the road, so it is usually approximated by the average
state in practice (Chu et al., 2012; Yazdani et al., 2021). The average speed of a truck
traveling in Chengdu is set as u = 30 kilometer per hour. Therefore, the travel time between
sites is calculated as ri,j =

di,j
u minutes, i, j ∈ {0} ∪ P ∪ S ∪ D. To ensure su�cient time

redundancy, we set the traveling time as an integer multiple of the time interval ∆t and

round upwards, i.e. ri,j =
⌈
ri,j
∆t

⌉
, so the number of planning periods is now approximately

T = max{ri,j} + 1, i, j ∈ {0} ∪ P ∪ S ∪ D. The time to load/unload a truck load of CW is
usually 2-5 minutes, depending on the uncertain operating conditions. By Chu et al., we set
the maximum number of load/unload operations per time interval ∆t at the production site,
back�ll site, and processing facility to 2, 3, and 3, respectively.

We consider both diesel and electrical truck �eets. Han et al. (2023) explores the cost
components of trucks in detail. For a diesel truck with an age of 5 years, �xed cost = purchase
cost + maintenance cost - residual value = 987,000 + 149,000 - 185,000 = 951,000 CNY,
then the average daily �xed cost = 951,000/365/5 = 521 CNY. Adding the driver's salary,
we set the �xed cost of the daily operation of diesel trucks as C0,v = 750 CNY, v ∈ Fd.
For an electrical truck, the purchase cost, maintenance cost, and residual value during the
operation period of 5 years are 521,000, 196,000, and 100,000 CNY, respectively. The driver's
salary is the same as that of the diesel truck, so the daily �xed cost of the electrical truck
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is calculated as C0,v = 550 CNY, v ∈ Fe. The diesel price in Chengdu city is 7.8 CNY per
liter, and the truck consumes 50 liters of fuel for 100 kilometers, so the cost of traveling
for a time interval ∆t is calculated as C1,v = 19.5 CNY, v ∈ Fd. The night-time price of
electricity is 0.4 CNY per kilowatt hour (kWh), while the daytime price is 1.5 CNY per
kWh. We therefore take the average price of electricity as 0.95 CNY per kWh. The electrical
truck consumes 200 kWh for 100 kilometers, so the cost of traveling for a time interval ∆t
is calculated as C1,v = 9.5 CNY, v ∈ Fe. The transport price and treatment fee of CW
are dynamically adjusted in practice, and there are no robust pricing standards in Chengdu.
Through consultation with practitioners in the construction industry, it is known that the
average transport price of CW is 20-30 CNY per tonne, and the treatment fee is 3-7 CNY
per tonne. Therefore, we set the transport price C2 = 25 CNY per tonne, and the market
price for treatment fee y′ = 5 CNY per tonne. The volume of CW produced is di�cult to
obtain, so we make reasonable assumptions based on publicly available data. According to the
government statistics report (Chengdu Urban Management Committee and CAUPD, 2024),
the Longquanyi District in Chengdu City produces approximately 180,000 tonnes of CW per
day, with each production site generating an average of 900 tonnes of CW. Therefore, we set
the daily production and back�ll from construction sites as a normal distribution with a mean
of 900 and a standard deviation of 100.

For further details on the parameters of electric and diesel trucks, refer to Truck Home
(2024a) and Truck Home (2024b), respectively. Emission model parameters are from Barth
et al. (2005) and presented in Table B1. We assume the acceleration τ and road angle δ are
both 0 based on regional tra�c conditions(Barth et al., 2005; Demir et al., 2011). Through
consultation with practitioners in the construction industry, we set up three processing facilities
to treat one tonne of CW resulting in pollution indices of h1 = 0.2, h2 = 0.4, h3 = 0.6
respectively.

According to Soares et al. (2020), and after a large number of repeated experiments, we
found that the following values of the parameters will lead to quick convergence. ω0 = 0.8, ω1 =
0.1, ω2 = 0.1,M = 200,m = 10, pm = 0.2, G′ = 3, σ = 0.2, ϵ = 0.001. The number of particles
K = 40. The upper-level objective function will not further improve usually after 20 iterations.

5.2. Computational performance

According to the parameter settings in Section 5.1, the lower level model [M1] contains
77,556 integer variables and 5,548 constraints. We implement the proposed hybrid approach
on a laptop equipped with Intel(R) Core(TM) i9-10850K CPU at 3.6 GHz and 128 GB of
RAM on a Windows 11 64-bit OS. We then discuss the model's performance for government
and carrier separately.

5.2.1. Optimal strategy of the carrier

We solve model [M1] using the Gurobi solver (Gurobi Optimization, LLC, 2024), setting
a time limit of 600 seconds. To assess the model's performance, we run 10 randomized experi-
ments, with the results illustrating the variation of the model gap over time, as shown in Fig. 6.
We observe that a high-quality solution (with a gap of less than 1%) can be obtained quickly,
typically within 15 seconds. This is because the optimal solution of the original problem is
close to the optimal solution of its linear relaxation. However, achieving a solution with a gap
of less than 0.1% proves to be more time-consuming.

[Figure 6 near here]
In the experiment, we set the random seed to 42 and aim for a gap of less than 0.5%. The

results are presented in Table 1. In this scenario, the total amount of CW at the production
sites exceeds the demand at the back�ll sites. As a result, trucks are tasked with transporting
waste from the production sites to the processing facilities and back�ll sites, but not from the
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processing facilities to the back�ll sites. A total of 105 trucks are in operation, consisting of 1
electric truck and 104 diesel trucks. As mentioned in Section 3, the carrier prefers using diesel
trucks to maximize pro�t. The electric truck is only deployed when the diesel trucks reach full
capacity.

[Table 1 near here]
Although the ideal method for evaluating the model's performance would involve compar-

ing its results to current practices, complete real-world data is not available. Based on the
analysis in Section 5.1, we estimate that the carrier requires 240 trucks to complete the trans-
portation task. In contrast, the proposed approach only requires 105 trucks. This suggests
that our method enhances transportation e�ciency by 2 to 3 times.

5.2.2. Optimal strategy of the government

To assess the solution quality for model [M3], we begin by solving model [M2-HPR] using
the Gurobi solver. The solution of the high-point model represents the system's performance
if all truck schedules are coordinated by the government. Under identical transportation tasks,
the results in Table 2 show a 30.54% reduction in the pollution value (11,723.23−8,142.39

11,723.23 ×100% =
30.54%) in the HPR compared to model [M1]. However, this improvement in pollution control
comes at a signi�cant cost: the carrier's pro�t decreases substantially, from 230,242.50 CNY
to 160,994.00 CNY.

[Table 2 near here]
We then apply the proposed method to solve model [M3]. In each run, we solve 800

integer programming subproblems (40 particles × 20 iterations). We set a GAP of 1% for
each subproblem, and the total running time for the proposed method is 13,536 seconds
(approximately 3.76 hours). Given that each planning period spans 10 hours, this solution time
is acceptable. Fig. 7 illustrates the Pareto solution set of model [M3]. An interesting �jump�
phenomenon is observed, where few feasible and Pareto optimal solutions for the pollution
value lie in the interval [8500, 9500]. This occurs when the subsidy amount is insu�cient to
cover the additional cost of using electric trucks, leading the carrier to favor diesel trucks.
However, once the subsidy surpasses this threshold, electric trucks become more attractive to
the carrier than diesel trucks.

[Figure 7 near here]
The high-quality solution of model [M3] is the Pareto optimal solution with the minimum

pollution value in Fig. 7. The results are shown in Table 3. The pollution value (primary
objective function value) is 8,265.56, so GAP_F1 = 1.51% (8,265.56−8,142.39

8,142.39 × 100% = 1.51%).
It shows that the proposed method �nds a satisfactory solution for the pollution value. The
secondary objective function value F2 is 6,655.17, thus the e�ective subsidy rate ESR =
95.74% ( |6,655.17−(−35,375.00)|−|(−232,032.87)−(−230,242.50)|

|6,655.17−(−35,375.00)| × 100% = 95.74%), i.e., 95.74% of the
government subsidies amount is used to reduce pollution. It shows that the proposed method
�nds a satisfactory solution for government subsidies. Therefore, we believe that the quality
of the solution found by the proposed method is high and close to the global optimal solution.

[Table 3 near here]
According to Table 3, the carrier dispatches all 30 electrical trucks to transport 2,760

tonnes of waste and an additional 73 diesel trucks for 12,820 tonnes. The government subsi-
dizes 42,000 CNY on the waste transportation process, which will reduce pollution by 29.49%
(11,723.23−8265.56

11,723.23 ×100% = 29.49%). To further explore the operation regulations of the trucks,
we examine Fig. 8. We observe some interesting phenomena: (1) Most production sites pri-
oritize transporting waste to the nearest back�ll sites. (2) When the closest site is occupied,
the production site will opt for the second nearest back�ll site. For instance, production site
S1 initially chooses back�ll site D1, but since D1 is already assigned to handle waste from S2,
the waste from S1 is instead shipped to D2 to reduce waiting time. This scheduling approach
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helps reduce congestion compared to manual methods. (3) The subsidies can incentivize the
carrier to use electric trucks for long-distance waste transportation. For example, transporta-
tion to P1 remain unchanged with or without the subsidies, but transportation to P2 and P3

shift from diesel trucks to electric trucks. This change occurs because P2 and P3 are further
from surrounding production sites, making electric trucks a more economical option. Further
analysis of important parameters is presented in Section 5.3.

[Figure 8 near here]

5.3. Sensitivity analysis

To understand the in�uence of the model parameters on the solution, a sensitivity analysis
is conducted on the key parameters of the model, including the bounds of the treatment fee,
the number of electrical trucks, and the truck speed.

5.3.1. Impact of the treatment fee

As a key parameter for policymaking, treatment fees directly in�uence pollution levels,
government subsidies, and carrier pro�ts (Huang et al., 2018). Therefore, we test di�erent
combinations of PUs and PLs to assess the sensitivity of the proposed model to treatment
fees. In these tests, the values of PUs are drawn from the range of [3,7] with a step of 0.5 and
PL is set as PU − 10 for each corresponding upper bound. The results are shown in Fig. 9.

As illustrated in Fig. 9 (a), pollution levels remain relatively stable across di�erent [PL, PU ]
intervals, indicating strong robustness of the model under varying policy settings. Fig. 9 (b)
shows a clear negative correlation between total treatment fees and carrier pro�ts, which aligns
with practical expectations. However, it is worth noting that a higher treatment fee upper
bound, while reducing government subsidies, may compress carrier pro�ts and increase the risk
of illegal dumping. Recent studies have proposed the use of AI-based techniques to detect non-
compliant behaviors during transportation, such as trajectory anomaly detection and illegal
dumping hotspot identi�cation (Gao et al., 2024; Yu and Han, 2025). Therefore, policymakers
may set treatment fee intervals [PL, PU ] in conjunction with AI-powered enforcement tools
and the experimental insights from this study (Fig. 9 (b)), enabling more targeted, adaptive,
and e�ective regulatory strategies.

[Figure 9 near here]

5.3.2. Impact of the number of electrical trucks

Increasing the ratio of electrical trucks to the CW transportation system could potentially
reduce emissions though at the price of higher cost. Based on the parameters in Section 5.1,
we set the number of electrical trucks N1 to [10, 50] with a step size of 10 and evaluate its
e�ects.

Fig. 10 demonstrates the changes in the pollution value and the total treatment fees with
di�erent ratios of electrical trucks. Both the pollution value and the total treatment fees show
an approximately linear relation with the number of trucks. The objective value of pollution
is reduced by 1,059.73 or 9.04% ( 1059.73

11723.23 × 100% = 9.04%) with a 10% increase of electrical
trucks. The government subsidies, on the other hand, increase by an average of 10,942.50
(CNY). Therefore, increasing the number of electrical trucks can signi�cantly reduce pollution
though may incur higher costs. In addition, the rapid advancement of autonomous driving
technology presents promising opportunities for its application in CW transportation (Hu
et al., 2024). Given that such tasks typically involve �xed and repetitive routes, autonomous
electric trucks have the potential to enhance transportation safety, operational stability, and
environmental performance.

[Figure 10 near here]
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5.3.3. Impact of the truck speed

The average truck speed u in�uences transportation e�ciency, emissions, carrier prof-
its, and hence government subsidies. In urban environments, truck speeds vary signi�cantly
between peak and o�-peak hours. According to AMap (2025), vehicle speeds in downtown
Chengdu typically range from 20 to 45 km/h. Based on this, we conduct a sensitivity analysis
using u = {20, 25, 30, 35, 40, 45}, focusing on two objectives: pollution level (F1 in model [M3])
and total treatment fees (i.e., −F2).

As shown in Fig. 11, when u increases from 20 to 40 km/h, the pollution level drops
signi�cantly from about 9,100 to 7,550. This may result from two factors. First, higher speeds
improve operational e�ciency, enabling electric trucks to handle more waste and thus reducing
reliance on diesel trucks. Second, as observed in Demir et al. (2014), fuel consumption per
kilometer generally decreases with increasing speed at lower ranges, before rising again beyond
a certain threshold. This explains the slight rebound in pollution when speed increases from
40 to 45 km/h, likely due to higher fuel consumption by diesel trucks. Regarding government
expenditure, the total treatment fees remain relatively stable in the [20, 40] range, indicating
low sensitivity. However, when the speed increases to 45 km/h, the total treatment fees
decrease signi�cantly. This is likely because higher speeds allow electric trucks to transport
more waste within the same period, leading to greater government subsidies.

In summary, at a truck speed of 40 km/h, both pollution and government subsidies are
lower. This aligns with typical night-time tra�c speeds in Chengdu. Thus, prioritizing CW
transportation during night hours could ease daytime congestion and improve environmental
and economic performance. Additionally, GPS data and AI technologies (e.g., route tracking,
speed prediction) can support real-time monitoring of truck compliance with time and speed
regulations, enabling precise supervision and adaptive decision-making (Gao et al., 2024).

[Figure 11 near here]

6. Conclusions

This study investigates the strategic interaction between the government and the carrier
in the context of CW transportation and proposes a bi-level optimization framework that
incorporates practical constraints and policy interventions. We �rst develop a customized
multi-vehicle minimum-cost �ow model to maximize carrier pro�t without subsidies. Building
on this, we construct a bi-level mixed-integer model where the government sets treatment fees
to minimize pollution and subsidy expenditure. To solve this computationally challenging
model, we design a hybrid algorithm based on MOPSO, where the upper level is handled by
MOPSO and the lower level is e�ciently solved using a commercial solver.

A large-scale case study in Chengdu demonstrates that the proposed method yields high-
quality solutions within a reasonable time (3.76 hours), achieving a solution gap of 1.51%.
Results show that an appropriate subsidy scheme can reduce emissions by 29.49%. The main
�ndings and managerial insights are as follows:

1) The scheduling scheme prioritizes the nearest available processing or back�ll site. When
the closest site is congested, the system reroutes to the second best option, e�ectively
alleviating local congestion;

2) A well-designed subsidy mechanism can improve transportation e�ciency by 2�3 times.
Without subsidies, diesel trucks are preferred; with subsidies, electric trucks become
more cost-e�ective, especially for medium- and long-distance routes;

3) The carrier's pro�t is positively correlated with the government subsidies. By adjusting
the treatment fees strategically, the government can intervene in the carrier's transporta-
tion schedule.
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4) Increasing the proportion of electric trucks signi�cantly reduces pollution. However,
their high purchase and operating costs necessitate government subsidies;

5) Truck travel speed substantially a�ects system outcomes. Extremely low or high speeds
hinder both pollution reduction and subsidy e�ciency. For example, in Chengdu, main-
taining an average speed of around 40 km/h is desirable.

The proposed model is �exible and extensible to more complex scenarios, such as multiple
CW types (Appendix C). While we strive to align modeling assumptions and parameters with
real-world settings, some limitations remain. First, the model assumes a �xed truck speed,
which may not fully capture real-time tra�c dynamics. Future research could incorporate
uncertainty modeling and AI-based tra�c prediction to improve robustness. Second, due to
limited access to detailed operational data, empirical validation remains a challenge. Field
studies with accurate real-world data are encouraged to further test and re�ne the model.
Third, integrating our framework with emerging AI technologies�such as route tracking,
violation detection, and autonomous electric trucks�may enable more precise regulation and
adaptive decision-making. Finally, although this study focuses on model formulation and
policy design, future work could explore the development of exact solution algorithms to
enhance computational accuracy and scalability.
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Appendix A. Table of notations

Table A1: Summary of notation.

Sets
{0} Depot
P Processing facilities P = {1, ..., P}
S Production sites S = {P + 1, ..., P + S}
D Back�ll sites D = {P + S + 1, ..., P + S +D}
T Planning period T = {0, 1, ..., T}
T Virtual planning period T = {−1, ...,−T}, T = max{ri,j}+ 1
G Time-space network G = {N ,A}, where N is the set of nodes and A is the set of

arcs
Af , Ad Set of fully loaded arcs, set of deadheading arcs
As, A0 Set of service arcs, set of zero arcs
Fe Electrical truck �eets Fe = {V1, ...,VE}
Fd Diesel truck �eets Fd = {VE+1, ...,VE+D}, E +D = V

Parameters
Nv Total number of trucks in feet v ∈ Fe ∪ Fd (veh)
Qv Rated load weight per truck in �eet v ∈ Fe ∪ Fd (kilogram/veh)

Qv Unloaded weight per truck in �eet v ∈ Fe ∪ Fd (kilogram/veh)

Mv Total weight per truck in the feet v ∈ Fd, Mv = Qv +Qv (kilogram/veh)
qsi Total weight of CW at production site i ∈ S during the planning period (tonne)
qdj Total weight of CW at back�ll site j ∈ D during the planning period (tonne)
∆t Time interval
ri,j Trucks take ri,j time intervals to travel from site i to area j for i, j ∈ {0}∪P∪S∪D
Bj Maximum number of trucks allowed to be serviced during the time interval ∆t in

site j ∈ P ∪ S ∪ D
C0,v Fixed cost per truck in �eet v ∈ Fe ∪ Fd (CNY/veh)
C1,v Average cost of driving a time interval ∆t with unloaded and fully loaded trucks

in �eet v ∈ Fe ∪ Fd (CNY)
C2 Price of transporting a tonne CW (CNY/tonne)
y′ Market guide price of treatment fee (CNY/tonne)
di,j Distance between site i ∈ {0} ∪ P ∪ S ∪ D and j ∈ {0} ∪ P ∪ S ∪ D (meter)
u Speed of trucks (meter/second)
PU Upper bound of treatment fee(CNY/tonne)
PL Lower bound of treatment fee (CNY/tonne)
ξ Fuel-to-air mass ratio
k Engine friction factor (kilojoule/revolution/liter)
N Engine speed (revolution/second)
V Engine displacement (liter)
κ Heating value of a typical diesel fuel (kilojoule/gram)
η E�ciency parameter for diesel engines
ηt Drive train e�ciency of trucks
τ Acceleration of trucks (meter/square second)
g Gravitational acceleration (meter/square second)
δ Road angle (degree)
fa Coe�cient of aerodynamic drag

(continued on next page)
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(continued)

fr Coe�cient of rolling resistance
φ Air density (kilogram/square meter)
A Frontal surface area of diesel CHTH (square meter)
θ Conversion factor of fuel from gram/second to liter/second
hj Pollution factor, j ∈ P
λ, γ, α, β λ = ξ

κθ , γ = 1
1,000ηtη

, α = τ + g sin δ + gfr cos δ, β = 0.5faφA

Decision variables
xi,j,v,t Total �ow of feet v ∈ Fe ∪ Fd from i ∈ {0} ∪ P ∪ S ∪ D to j ∈ {0} ∪ P ∪ S ∪ D at

time t ∈ T ∪ T (veh)
yj,v Treatment fee of transporting CW via �eet v ∈ Fe∪Fd to processing facility j ∈ P

for harmless treatment (CNY/tonne)

Appendix B. Table of partial parameter values

Table B1: Partial parameter values.

Parameter Value Parameter Value

T 60 ∆t 10 minutes
u 30 kilometers/hour C0,v 750 CNY, v ∈ Fd; 550 CNY, v ∈ Fe

C1,v 19.5 CNY, v ∈ Fd; 9.5 CNY, v ∈ Fe C2 25 CNY
y′ 5 CNY θ 737

Qv 15,500 kilogram, v ∈ Fd Mv 31,000 kilogram, v ∈ Fd

ξ 1 k 0.2 kilojoule/revolution/liter
N 32 revolution/second V 12.54 liter
κ 44 kilojoule/gram η 0.9
ηt 0.4 τ 0
g 9.81 meter/square second δ 0
fa 0.7 fr 0.01
φ 1.2041 kilogram/square meter A 8.9 square meter

Appendix C. Models considering multiple CW types

Here we consider one extension of the model when CW can be categorized as multiple types
such as inert waste, non-inert non-hazardous waste, and hazardous waste (Chen et al., 2024).
Di�erent types of waste have di�erent recycling methods and treatment fees. Speci�cally, we
de�ne C as the set of all types of CW, and c ∈ C is a certain type of CW, and c = 0 represents
that the trucks run empty. We rede�ne the upper decision variable yj,v and the lower decision
variable xi,j,v,t as yj,v,c, xi,j,v,t,c, respectively, i, j ∈ {0}∪P∪S∪D, v ∈ Fe∪Fd, t ∈ T ∪T , c ∈ C.
We de�ne the models that consider multiple types of CW as model [M4] and model [M5].
Models [M4] and [M5] are consistent with the solution approach for models [M2] and [M3],
respectively.

26



[M4]

Min F ′
1(x

′|y) =
∑
c∈C

∑
i∈P∪S∪D

∑
j∈P∪S∪D

∑
v∈Fd

∑
t∈T

kNV λdi,jx
′
i,j,v,t,c/u

+
∑
c∈C

∑
i∈P∪S∪D

∑
j∈P∪S∪D

∑
v∈Fd

∑
t∈T

Qvγλαi,jdi,jx
′
i,j,v,t,c

+
∑
c∈C

∑
i∈S

∑
j∈P∪D

∑
v∈Fd

∑
t∈T

Qvγλαi,jdi,jx
′
i,j,v,t,c

+
∑
c∈C

∑
i∈P

∑
j∈D

∑
v∈Fd

∑
t∈T

Qvγλαi,jdi,jx
′
i,j,v,t,c

+
∑
c∈C

∑
i∈P∪S∪D

∑
j∈P∪S∪D

∑
v∈Fd

∑
t∈T

βγλdi,jx
′
i,j,v,t,cu

2

+
∑
c∈C

∑
i∈S

∑
j∈P

∑
v∈Fe∪Fd

∑
t∈T

hjQvx
′
i,j,v,t,c;

(C1)

Subject to:

yj,v,c ≥ PL,∀j ∈ P, ∀v ∈ Fe ∪ Fd, ∀c ∈ C; (C2)

yj,v,c ≤ PU,∀j ∈ P, ∀v ∈ Fe ∪ Fd, ∀c ∈ C; (C3)

where

x′ ∈ argmin{f ′′(x,y) =
∑

v∈Fe∪Fd

∑
j∈P∪S∪D

∑
t∈T

C0,vx0,j,v,t,0

+
∑
c∈C

∑
v∈Fe∪Fd

∑
i∈P∪S∪D

∑
j∈P∪S∪D

∑
t∈T

C1,vri,jxi,j,v,t,c

−
∑
c∈C

∑
v∈Fe∪Fd

∑
i∈S∪P

∑
j∈D

∑
t∈T

C2Qvxi,j,v,t,c

−
∑
c∈C

∑
v∈Fe∪Fd

∑
i∈S

∑
j∈P

∑
t∈T

(C2 − yj,v,c)Qvxi,j,v,t,c};

(C4)

Subject to:∑
j∈P∪S∪D

∑
t∈T

x0,j,v,t,0 ≤ Nv, ∀v ∈ Fe ∪ Fd; (C5)

∑
j∈P∪S∪D

∑
t∈T

x0,j,v,t,0 −
∑

i∈P∪S∪D

∑
t∈T

xi,0,v,t,0 = 0,∀v ∈ Fe ∪ Fd; (C6)

∑
c∈C

∑
i∈{0}∪P∪S∪D

xi,j,v,t−ri,j−1,c −
∑
c∈C

∑
i∈{0}∪P∪S∪D

xj,i,v,t,c = 0,

∀j ∈ P ∪ S ∪ D, ∀v ∈ Fe ∪ Fd, ∀t ∈ T ; (C7)∑
c∈C

∑
i∈{0}∪P∪S∪D

∑
v∈Fe∪Fd

xi,j,v,t−ri,j ,c ≤ Bj , ∀j ∈ P ∪ S ∪ D, ∀t ∈ T ; (C8)

∑
c∈C

∑
j∈P∪D

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t,c/1, 000 = qsi, ∀i ∈ S; (C9)

∑
c∈C

∑
i∈P∪S

∑
v∈Fe∪Fd

∑
t∈T

Qvxi,j,v,t,c/1, 000 = qdj , ∀j ∈ D; (C10)

xi,j,v,t,c = 0,∀i, j ∈ {0} ∪ P ∪ S ∪ D, ∀v ∈ Fe ∪ Fd, ∀t ∈ T , ∀c ∈ C; (C11)

xi,j,v,t,c = 0,∃H ∈ {{0},P,S,D}, ∀i, j ∈ H, ∀v ∈ Fe ∪ Fd, ∀t ∈ T , ∀c ∈ C; (C12)
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x0,j,v,t,c = 0,∀j ∈ {0} ∪ P ∪ S ∪D, ∀v ∈ Fe ∪ Fd, ∀t ∈ T , ∀c ∈ C\{0}; (C13)

xi,0,v,t,c = 0,∀i ∈ {0} ∪ P ∪ S ∪D,∀v ∈ Fe ∪ Fd, ∀t ∈ T , ∀c ∈ C\{0}; (C14)∑
c∈C

xi,j,v,t,c ∈ {0, 1, ..., Bj}, ∀i, j ∈ {0} ∪ P ∪ S ∪D,∀v ∈ Fe ∪ Fd, ∀t ∈ T ∪ T .

(C15)

[M5]

Min −
∑
c∈C

∑
i∈S

∑
j∈P

∑
v∈Fe∪Fd

∑
t∈T

yj,v,cQvx
′
i,j,v,t,c; (C16)

Subject to:

F ′
1(x

′|y) = F ′
1(x

∗
M4); (C17)

Constraints (C2)− (C3);

where

x′ ∈ argmin{f ′′(x,y)}; (C18)

Subject to:

Constraints (C5)-(C15).

The solution approach of this model could be barely solved by the same routine as presented
in Section 4.
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Table 1: Results of model [M1]

Parameters Values

Objective value: pro�t of carrier (CNY) 230,242.50
Gap 0.37%
Runtime (second) 45
Total treatment fees (CNY) 35,375.00
Pollution value 11,723.23
Number of electrical trucks 1
Number of diesel trucks 104
Transport volume of electrical trucks (tonne) 70
Transport volume of diesel trucks (tonne) 15,570
Transport volume from S to P (tonne) 7,075
Transport volume from S to D (tonne) 8,565
Transport volume from P to D (tonne) 0
Total volume of CW (tonne) 15,640
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Table 2: Results of model [M2-HPR]

Parameters Values

Objective value: pollution value 8,142.39
Gap 0.43%
Runtime (second) 58
Pro�t of carrier (CNY) 160,994
Total treatment fees (CNY) 35,175
Number of electrical trucks 30
Number of diesel trucks 210
Transport volume of electrical trucks (tonne) 2,790
Transport volume of diesel trucks (tonne) 12,825
Transport volume from S to P 7,035
Transport volume from S to D 8,580
Transport volume from P to D 0
Total volume of CW (tonne) 15,615
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Table 3: Results of model [M3]

Parameters Values

Primary objective F1: pollution value 8,265.56
Secondary objective F2: Opposite of total treatment fees (CNY) 6655.17
Runtime (second) 13,536 (3.76 hours)
Pro�t of carrier (CNY) 232,032.87
Number of electrical trucks 30
Number of diesel trucks 73
Transport volume of electrical trucks (tonne) 2,760
Transport volume of diesel trucks (tonne) 12,820
Transport volume from S to P (tonne) 7,025
Transport volume from S to D (tonne) 8,555
Transport volume from P to D (tonne) 0
Total volume of CW (tonne) 15,580
The gap of objective function F1, GAP_F1 1.51%
E�ective subsidy rate, ESR 95.74%
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Figure 1: The structure of bi-level model.
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Figure 2: Time-space network G.
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Figure 3: Hybrid algorithm �owchart.

36



Figure 4: Frequency distribution of trucks held by carriers.
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Figure 5: The location of sites.
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Figure 6: The variations of model gap with run time. Ten repetitions of the experiment for model [M1].
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Figure 7: The Pareto optimal solution set of [M3].
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Figure 8: Movement of CW and trucks between sites. (a) illustrates the �ow of CW between each site in a
planning period, where the stroke width of the arcs represents the amount of CW. (b) shows the movement
of electrical and diesel trucks between each site in a planning period, where the stroke width of the arcs
corresponds to the total number of trips.
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Figure 9: Sensitivity of the treatment fee.
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Figure 10: Sensitivity of the number of electrical trucks.
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Figure 11: Sensitivity of the truck speed.
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