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Reasons for Using Terminals

@ ltems are often transshipped when there is an incentive to change transporta-
tion modes or vehicle types.

@ While geographical barriers such as coastlines invariably require a modal
change (e.g. at seaports), purely economical considerations may also en-
courage changes in vehicle type.

o We may find the optimal dispatching frequency and the size of the influ-
ence area [* for the system
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The Design Problem
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The total cost per item distributed is the sum
of the terminal, inbound and outbound costs:

as + ag/l+Z(\ r, )+ 2°(\, 6, 1)
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View of the Level-I Influence Area
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View of the Level-I Influence Area (cont.)

@ The figure depicts a level-1 terminal and its influence area, whose size is now
denoted /1 (x). Recall that all the customers in a level-1 area are served from
the level-1 terminal with at most 1 transshipment, not including the one at the
level-1 terminal, and that the level-1 terminals themselves are served without
transshipments from the depot.

@ This structural organization makes it easy to express, conditional on /i, the
inbound, outbound and terminal costs for a level-1 terminal; the logistic cost
function is now:

cost/item = (as + ag/h) + Z(\, r, h) + Z*(\, 6, 1)
L 1L 1L 1
terminal cost inbound cost  outbound cost
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@ The terminal and inbound costs as-

sume the same functional form as
in the expression for distribution
systems with one terminal, since
the cost of delivering and passing
through the level-1 terminals does
not depend on how the items are
treated once they leave them.

The outbound cost is superscripted
by “1" since Z; should now repre-
sent the average of z (A, r,d) in-
stead of the (larger) z (A, r, )
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@ Multiple transshipments are unlikely to be advisable for most physical distri-
bution applications, because each additional transshipment generates ad-
ditional handling costs and the vehicle economies (viax vs. V,,,,) can be
achieved with just one transshipment.

@ In any case, systems that allow multiple transshipments can be designed, using
the one-transshipment results as a building block.
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This lecture presents a simple recursive technique to this effect, and illustrates it
with an example. The technique uses the function z, (A, r, d) to construct a function
73(\, r, §) representing the minimum cost per item with at most two transshipments.
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Outbound cost of the level-1 influence area

@ We may want to approximate the average cost by the cost of the average:
ZH(N, 6, 1) = 2 (X, 0.38//2,6)

but the accuracy of this approximation will now have deteriorated because z;
is more highly non-linear as a function of r than z.

@ One may instead opt for using the exact definition:
ZH\ 6, 1) = Efzi(\, 8, 1)]

@ Either one of these expressions can be used to find the minimum of the logistics
cost with respect to ;. The result should be a function of A, r, and §.
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@ Z5(A,r,8), as a function of r, should start higher and be flatter than either z
or zf. A BB RBRATREK, 22 ALAHERFE N —%kE#iE,
BEL

@ As a result, we may find a second critical distance beyond which two trans-
shipments are needed (25 < z). For most practical problems, this distance
is likely to be large compared with the distance between the depot and the
farthest reaches of R.
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@ |t is theoretically possible, but practically unnecessary, to iterate this procedure
to obtain the optimal size of higher level influence areas. The technique can
also be applied if shipments are to be synchronized at the level-1 terminals and
also if constraints require a more extensive list of conditioning variables for the
decomposition principle to apply.

@ In this case one would minimize Z, (X, r, I, H')+22,(), §, I, H°)+(c,+cp) max[HC; H
(a5 +agl™t) holding H; constant, and this variable would appear in the expres-
sion for Z;. The new expression would then include the inbound and outbound
headways as decision variables, in addition to
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@ In order to design the system one would carve out the service region into
influence areas approximating the ideal size /;(x). Of course, this only needs
to be done for the portion of R lying beyond the second critical distance.

@ The headways at the level-1 terminals, a byproduct of the optimization, can
be used to construct the level-1 feeder routes and schedules.

@ Within each level-1 influence area, the system can be designed as previously.
An example illustrates the procedure.
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@ The example that led to Zf in the primal one transshipment problem is con-
tinued here.

@ To simplify the notation we will give some arbitrary values to the constants
that appeared: vpax = b = b = a/A = /A = 1, and will then eliminate
these variables from the notation. We assume that the demand and customer
density do not depend on location or time, and use the case with v, = .
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Recall the cost expressions:

. 2.7b
(A, r,d) = 3Vima +[ lr=1+27r
)\ Vmax
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2(\0, 1) = w2 pr_ g b2
)\ Vma><
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71\ 1/2
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Putting in the given values, we know

a 6
w
zg=1+2T7r g 5
2 =1+ Saf
i o
2(1,10) = 2(:/6)", = | z,(\,r,8)
=272, ., :
ZT =1+ 2.8/’1/4. E | Critical Distance = 1.05
z Vo
Thus O 00 | > 3

z1(r) = 1+ min{2.7r,2.8/*/4}

Note that when r > 1.05, transshipments become necessary.
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To calculate Z*(h), one should take the expectation of z;(r) for the r values that
arise in an influence area of size I : re [0, (h/7)%?].

o For small influence areas (i < 0.2971),z(r) =1+ 2.7r and
ZMh) =1+ 2 if b <0297

In this case, the level-1 influence area is not large enough to require another
transshipment.

@ For /; > 0.297, we find
ZH(h) =E[zi(A, r,9)]

1.05 (h/m)"? 1/a
27wr A% x orr
21 :1+2.7J Ldr+2.8J r'emryy
(h) o (h/m)?2 Los (h/m)2

—14+2.17(F® — [T if i > 02071,
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Applying the optimal ff, cost per item now becomes (remember that we assumed
Qg5 = g = 0)

4= 2(r/h)2 41 + 12 if h <0297
/)2 + 1+ 217(R8 — 1Y) if b > 02971,
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@ This expression should now be min-
imized for all values of r. For
this particular problem the task is
easy. One can find for every [}, the
value of r that makes it optimal —
and one can be plotted against the
other.

@ The right figure plots the reciprocal
(%X H) of If as a function of r.
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Optimal density of terminals as a function of distance

@ The right figure plots the minimum
cost as a function of r as well.

@ When r reaches 3.75, the cost, z},
equals z;. For larger values, two ter-
minal shipping is best
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Partition of service zone into influence areas

@ This figure depicts a pos- | 5 o
f : . . o, L Tl Mo Tronsshipment
sible configuration of influ- & =17 { 25~ ==-~.__ i e
Y i One T hipment
ence areas for a square of R 1 Tt s
R Y - O Two Transshipments

side that attempts to be
true to the density of ter-
minals shown in the previ-

-=-= Loci of Points
Whose Influence Area
Should be of A Given Size

ous page

@ For this particular problem ? e e e
the task is easy. One can P il g IS B I
find for every [¥, the value
of r that makes it optimal £/

— and one can be plotted 7
against the other.
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Partition of service zone into influence areas (cont.)

@ Unfortunately, the size of the influence areas forces them to include points that
would be better served with larger or smaller influence areas. For example, the
level-1 influence zones have an area of approximately 20 units, but they include
points that optimally would require ; = 13 to /; = 42, plus a few corners with
even more stringent requirements.

@ Inspection of the expression for cost per item, reveals that variations from the
optimal /; by a factor of 2 only increase the objective function by about 1%.

@ This robustness is even more pronounced than that observed for level-0 influ-
ence areas because the exponents of the objective function are now closer to
zero

= the departures from optimality observed in the previous page should not matter
much.
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Fine-tuning

@ The exact location of the boundaries and terminals can be fine tuned if desired,
but since they are fairly round and centered, respectively, the configuration
shown should be nearly optimal.

@ In fact, even the precise location of the boundary between 2 and 1 transship-
ment service areas is not particularly crucial. The following section describes
an automatic way to fine-tune, or even develop a design.
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@ Before starting, we should mention that the design problem has also been
treated in the literature as a pure optimization exercise - without resorting to
the CA approach. In the applied mathematics literature the problem is called
the “optimal resource allocation problem™*

@ Pertinent works seek cost-minimizing locations for point-like service facilities
in a space continuum, among a continuum of customers. Unfortunately,
these optimization problems turn out to be “easy” only when cost is defined
as a simple function of a distance norm.

@ This cost structure, e.g., with the translational symmetry implied by a norm,
is unrealistic for typical logistics problems where costs are complicated and
almost invariably location-dependent.

*see Okabe et al. (1992) and Du et al. (1999)
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@ More realistic cost scenarios can be analyzed by considering discrete versions
of the problem with only a finite number of locations*.

@ Problems of this type are usually solved with mixed-integer programming tech-
niques, where the terminal locations and customer allocations are decision
variables.

@ But unfortunately, existing programming methods can only deal effectively with
small problems if they have complicated cost structures.

*An extensive operations research literature explores this line of inquiry; see e.g., Daskin (1995)
and Drezner and Hamacher (2002).
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@ The manual method overcomes these drawbacks. It succeeds, e.g., as in the
example of multiple transshipments because it decomposes the problem in two
manageable parts.

o We first look for a continuous target /*(x) without paying attention to the
discrete locations, and then delegate the difficult but non-crucial task of finding
the specific locations to the human mind. As explained in the design problem,
the human designer is simply asked to partition the service region into “round”
influence areas {/;} of a size consistent with the CA target /*(x), and a set of
centrally-located terminals {x;}.

@ The remainder of this lecture® shows that this second step can also be per-
formed automatically, even for large problems.

*One may refer to Ouyang and Daganzo (2004) for details
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@ Because roundness is important, we first look for a set of nonoverlapping cir-
cular disks contained within the service region, of individual sizes as close the
ideal /*(x) as possible.

@ The number of disks is given by the CA procedure: N = {/*(x)"1dx. More
specifically, if we characterize the disks by their centers x; and their radii r;
(for i=1,2,...N), we look for a set of (x;,r;) that satisfy: I*(x;) ~ krr? for
i=1,...N, for a value of k as close to 1 as possible.

@ Once this is done, we generate influence areas by allocating each point in
the service region to the nearest x;. This is the right thing to do because
it guarantees that the influence areas so generated contain one disk a piece.
Therefore, they must be “round” - assuming that a solution with k ~ 1 has
been found.
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e To find a set of disks, we assign some initial values to the (x;, ;) and model
the disks as if they were physical particles that (i) are repelled when they
overlap either with each other or with the boundary, and (ii) change radius as
they move over the service region with the recipe: r; ~ [F*(x;)/kn]/?. If k is
sufficiently large, a discrete-time simulation of this system quickly leads to an
equilibrium where all forces vanish and there is no overlap*.

@ The simulation is then repeated with a smaller k. A step-wise gradual reduction
in k is continued until an equilibrium cannot be found. This will happen before
k = 1, since circles do not partition Euclidean space. The procedure is then
terminated.

@ This procedure can quickly find good designs to problems of practical size.

*This assumes that the service region is “simply connected”, in the sense that a disk of proper
size can always be slid between any two points in the service region without touching the boundary.
No generality is lost by this assumption, because complex areas (e.g., Japan) can usually be
partitioned into simply connected components to which the model can be applied separately

freported in Ouyang and Daganzo (2004)
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Service area with uniform terminal density

N=7, Initial Locations
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@ The figure shows how the method converges in a case where the best design
is known. The region is poly-hexagonal with N = 7, and the target area size
I*(x) is independent of location. The best design is shown in (a), and (b)-(d)
show the production of the algorithms of (1) initial locations, (2) location after
200 iterations, (3) equilibrium after 440 iterations respectively.
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@ The algorithm has also been applied to the example in lecture on the one
transshipment problem using /* = 2Ymc x (Z,Tb/r)l/2 as the target function with
a=b=3a =b = vy =1, ie. F(x) =2[r(x)/\(x)]*2. (Recall that r(x)
was the Euclidean distance to the depot, and A(x) the demand density.)

@ Two cases were considered: (a) uniform demand, where A = 1 and /*(x) =
2r(x)/2; and (b) declining demand, where A\(x) = r(x)~? and I*(x) =
2r(x)3/4. The following two slides show the results for four square regions
of sides L = 5,7,10 and 25 when the customer demand is homogeneous and
inhomogeneous, respectively.
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Solution for homogeneous customer demand
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Solution for inhomogeneous customer demand
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@ In the uniform demand case the difference between the CA cost prediction for
the variable costs —the integral 2.83(-2-)Y2(Z£1)1/4 over the service region

— and the variable costs arising from the design is quite small: 2.4% for L =
5,0.8% for L =7, 0.9% for L = 10, and 0.9% for L = 25.

@ In the variable demand case the cost differences are 2.6%, 2.3%, 1.6%, and
0.7% respectively. All these differences are exaggerations because they ignore
fixed costs, such as a“5e, which are large and can be predicted without error
by the CA method.

@ In all cases, the CA prediction was lower than the actual cost. This is not a
coincidence. The CA predictions for our examples should be lower bounds to
the optimum solution. Thus, the percentage differences we observed can be
interpreted as optimality gaps.
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@ Note that in both scenarios, and in agreement with theory, the accuracy of the
CA formulae and the efficiency of the proposed design method improves with
problem size considerably.

@ It means both, that the CA formulae describe well the optimum costs of large
complex problems, and that the CA discretization algorithm can complement
conventional optimization methods when they would have the most difficulty.
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Although the discretization procedure was illustrated with Euclidean metrics, it can
also be applied to other metrics by deforming the disks during the simulations, and
using true distances in the tessellation step. For example, designs for L; metrics
should use square “disks” with the same repulsive forces as before, and the L;
distance formula. An example is shown in next slide.
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Any questions?
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Readings

o Daganzo. Logistics System Analysis. Ch.5. Page 195-206.
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