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The Problem

o We will focus first on the problem with only one transshipment (finding
Io(x)). This most common case is also useful as a building block toward
multiple transshipment solutions.

@ The one transshipment problem is similar to the classical facility sizing and
location problem; it is slightly more complicated, however, because in addition
to facility sizes, service schedules need to be determined.
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o Consider an imaginary subregion of R that is located r distance units away from
the depot and exhibits a constant, stationary demand rate density (A items per
unit time and unit area) and a constant spatial customer density (0 customers
per unit area).

o We will find the optimal dispatching frequency and the size of the in-
fluence area /* in the imaginary subregion, assuming that vehicle routes are
constructed as described in 1-to-N distribution systems — the subscript “0" is
not used to index “I" because only level-0 influence areas are being considered
in this talk.
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Produced items

If no effort is made to coordinate the inbound
and outbound (# 3% 5 # 3%) schedules at a
terminal, but the inbound and outbound head-
ways (H'; H°) are constant, the accumulation
of items at the terminal for a specific destina-
tion is given by the vertical separation be-
tween step curves such as those of the figure.
The average inventory cost per item is then
(ci/2)(H + H°)

CUMULATIVE NUMBER OF ITEMS
SPECIFIC TO DESTINATION n

TIME
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Holding costs at the terminal

@ The maximum accumulation of items of any type cannot exceed the maximum
vertical separation between the two curves. Since the item flow through the
terminal is Y = A/, the maximum vertical separation is )\/(Hi + H°). Thus,
a conservative estimate for the holding costs per item at the terminal (the
terminal serves an area of size /), is:

Ci

(5 + DIH] + (5 + DIH + (6 + A

2

where H* represents a (fixed) transfer time that an item must spend in the
terminal even if H' and H° were zero, and ct is the terminal rent cost coefficient
(in monetary units per item-time).
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Holding costs at the terminal (cont.)

The waiting costs per item at the terminal

=+ DIH]+ (5 + DI+ (+ HH

are a sum of three separable components:

@ a first term which only depends on H' and is identical to the term that would
have existed if the terminals had been the final destinations;

@ a second term which only depends on H° and is identical to the term that
would exist if the terminal had been a depot producing items at a constant
rate

© and a third term which is a constant penalty
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Discourage small terminals

@ For more realism we may also want to include a minimum rent to be paid per
unit time ¢¢, even if the maximum accumulation is zero. This will discourage
the operation of very small terminals. Prorated to the items served in one time
unit, the minimum rent is c2/(\/) ; thus, the third term becomes:

CO
. HHE 4+ Zr
(ci+c)H + N

@ This expression only accounts for the holding costs specific to the terminal;
i.e. costs added by the transshipments, and not included in the sum of costs
of distribution to the terminals and the cost of distribution from the terminals
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Handling cost

@ In addition, items passing through the terminal must pay a handling cost
penalty, which will have three terms: the cost of unloading the vehicle, the
cost of sorting and transferring the items internally and the cost of loading the
outbound vehicles.

@ The 1st term is the same that would have to be paid if the terminal was a final
destination, and the 3rd term the same as if the terminal was the depot; these
two terms will be captured later.

@ The 2nd term is terminal-specific. Its magnitude, on a daily basis, should grow
roughly linearly with the number of items handled A/, expressed as a cost per
item, it should be of the form:

c?/(A\D) + ch

where ¢? and ¢ are handling cost constants that depend on the nature of the
items and the terminals.
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@ The total (motion plus holding) cost specific to the terminal is the sum:
terminal cost per item ~ as + ag//

where a5 = (¢t + ¢;H" + ctH') and ap = (¢ + ¢?)/A.
@ Note that this expression is independent of H' and H°. It captures the costs

not included in the sum of the costs of distributing to the terminals (inbound
costs Z'), and the costs of delivering from the terminals (outbound costs z°)
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Inbound Costs

@ The total logistic cost, in addition to the terminal cost, must include all inbound
and outbound costs. These costs already have been studied, as in the 1-to-N
systems z = ap + £3 + Z + a3ns + Qs St N5V < Vinaxi s > 1 0,48 T A&
K AR A A SRR

@ The inbound cost would be given by the minimum of total motion cost as
applied to a problem where the terminals are the final destinations. Thus,
Vmax IS the capacity of the vehicles used to feed the terminals, and the spatial
density of customers § becomes the density of terminals /71, Je ¥ 3:4K 41 & %
Aoy, W 13 % EE R LGB RANKALT U 2] sk A6+ 5

o Care must be exercised in solving the equations. For large /, constraint ns > 1
may be binding. It may be optimal for vehicles to visit only one terminal at
a time (n¥ = 1). Other constraints for route length or number of stops may
also have to be considered

ap = &, + cir/s+ cits/2; a1 = 2rcg + s; an = cqkd V2 + cs; a3 = 1/2¢i(k6 Y2 [s + t5); ag =
Ch/D/
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@ In solving the problem we may also want to alter the value of k (the VRP
dimensionless constant for the distance added by each stop) to reflect the fact
that stops will now be (roughly) on a lattice. ¥ BB & X 8 oA £ M #% L,
AL % e S R kA TRAA

o This coefficient declines a little, but the change is only on the order of 15%*.
When there are more stops per tour than tours (this is highly unlikely when
distributing to terminals) the change in k' is also small. % & AN3rA2 BT IR 4549
FRER % THRAZKET, k BRI

*See Problem 5.2
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@ In any case, the minimum inbound cost will be a function of decision variable
I only. This function will decrease with / because the more concentrated the
demand becomes at fewer terminals (/ — o) the cheaper it is to serve it. %
REMEPFE— PR, JRGE & &G RAAMK

@ Note that the minimum cost per item can depend on parameters r and A\ but
not on §. It will be denoted: Z/(\,r, /). The cost per unit area and per unit

time, AZ, will share the same properties
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@ The outbound cost per item depends on the density of destinations, but not
on the distance from the depot. It can be calculated with the continuous ap-
proximation method, as if the terminal were producing items for the customers
in its influence area, and averaging the result across the influence area in the
usual way.
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o Let z,(\, r, ) denote the per-item cost of serving without transshipments a set
of customers located r distance units away from a depot (the terminal) when
the demand rate density is A and the destination density is ¢ .

@ This function is also similar to the logistics cost in the 1-to-N distribution
system, but it may be somewhat different than for inbound costs because:

@ customers may be randomly scattered (not on a lattice like the terminals)
@ vehicles may have smaller capacities

@ travel speeds may be lower
@ perhaps all the customers do not need to be visited with each dispatch

HHBRFE B %121 15 / 95
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@ According to the continuous approximation approach, the cost per item de-
livered from the terminal can be approximated by averaging z,(A, r,d) over r,
where r is now the distance from points in the influence area to its terminal.
We will denote this average, independent of r but a function of /, by a capital
“Z" superscripted by “zero” — the level of the influence area — Z°. Thus:

22\, 6, 1) = Ez0(N\, 6, 1)]

@ 7y increases with r, and that in some cases (e.g. when the vehicles are filled to
capacity*) it does so linearly. It is thus reasonable to substitute E,[zo(), r,0)]
by zo(A, E[r],d), and to approximate E(r) by a simple function of /.

*total combined cost per itema [cs + 2¢gE(r)]/Vimax + <, + 2{cr[cs + cqkE(5—/?)]/D'}1/2 and
total motion cost per itema L + 22 4 g vinax
HHBRFE B %12 A 16 / 95
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Since influence areas will be drawn to approximate circles and the density of des-
tinations is approximately uniform, we can assume that E(r) is 2/3 the maximum
distance from the terminal, (//m)}/2*, and thus:

2 [1
22\, 6,0) = z (A, \f 5) — 2 (1,0.38/2,4)
3Vnw

which increases with /, (linearly with /2 in some important cases

HRAEE— B E S IEB B PR 2R/3, W E 09 EzA (Im)/?
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The Design Problem

[a]
E The next step consists in writing a logistic
= Total cost function that relates the total cost per
| . L - .
i item distributed to the decision variables of
= d Outbound the problem. In our particular case, the total
E ! cost per item distributed is the sum of the
o ' terminal, inbound and outbound costs:
@ | Inbound i 20
U

21 Terminal lOé5 + Oé@/{-‘r lZl()\7 r, /)l +| ()\, d, /)I

I* - terminal inbound outbound

I
SIZE OF INFLUENCE AREA
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@ The value of / that minimizes this expression is the size of the influence area
which we would like to use. Values of [ larger than the service region size,
|R|, do not need to be considered. The optimum influence area size, /*, should
usually grow with the distance from the depot but it can also be independent of
r, e.g., as occurs with the “cheap item" scenario leading to ﬁ + % + (4 Vimax -

@ The minimum cost obtained with the above expression, denoted zf (\, r,d) be-
cause one transshipment is used, should be compared to the cost of distribution
without transshipments, zo(A, r,d). Only if Zf < zy should transshipments be
used. The cost per item with up to one transshipment z; is the minimum of
Zf and zp: z1 = min{z, Z'}.

HHBRFE B %12 A 19 / 95



FIN T 464K 28 )5 0 iR A A

25(2,1,8)

zft)\,r‘S)

: 2, (\,1,8)
|

L

DISTANCE FROM THE DEPOT, r

COST PER ITEM DELIVERED

Critical Distance

HHBRFE B

The figure depicts this relationship as a func-
tion of rfor constant A and 6. As we have in-
dicated, zy increases with r; z’l“ also increases
with r, but at a lower rate for large r. If the
curves don't intersect, then terminals don't
have the potential for reducing cost. We have
already seen that terminals are beneficial if
there are restrictions to the size of a lo-
cal delivery vehicle and/or route length
limitations, but in the absence of such limi-
tations transshipments are likely to be unnec-
essary
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@ The expected total cost per unit time over P, any subregion of R, can be ob-
tained even before a solution scheme is constructed, by integrating Az (A, r, 0)
over P. Expressed per unit time, the total cost, again denoted by a capital
“Z",is:

Z4H(P) = f Az (A, r, 6)dx,
P
where A, r,and § can be slow varying functions of x. The subscript “T" alludes

to “total cost per unit time” and the superscript to the maximum number of
transshipments allowed.
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This figure depicts the loci of points in R for
which level—0 influence areas have five differ-
ent sizes. This could be the result of solving
the idealized model for different points in R,
with different A, r and §. These sizes were
chosen to increase relatively fast to make the
5 partitioning more difficult. Points in between
the curves require intermediate sizes.

(a)

EEe
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This figure shows a possible partition of R
(b) that conforms fairly well with the stated re-
quirements.
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@ In general, the complete design can be obtained as follows. First carve out
“round” influence areas that pack and conform to the calculated sizes /(x) as
well as possible, as we have just shown. Then locate the terminals near their
middle, obeying any local constraints that may exist. Finally, determine the
optimal operating strategy within each influence area using the techniques for
the 1-to-N distribution systems, separately from the others. % #&94% 3+ 3¢
B, SEBRFANGFSTE LN I(x) XKD FaRR; Re, £
»‘iEfK"’JfRfﬁ’Jﬁf‘ﬁT Foop SAR 200 B T H AR F 0 }}i)é‘, AF 1%

BERART AL, AHNYh R B R EE Kk
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@ Note from the figure that while many points in R do not belong to an influence
area of the right size, few have to be enclosed in areas that are off by more
than 50% from the target size. Larger discrepancies should be rare in practice.
Discrepancies of typical magnitude introduce little error into the resulting cost,
Z-(R), since the logistic cost function is usually rather flat around its minimum
with respect to /
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as + ag/l+Z(\ r, )+ 22(\, 6, 1)

terminal inbound outbound

@ The solution to problem 3.10 illustrates this fact by examining cost functions
of the common form: al? + BI72(a,b < 1). For this kind of expression the
chosen value of / can depart from the optimum by as much as 50%, and the
resulting cost will still be within a few percent of the optimum. When a and b
are smaller than 1 the solution is even more robust than the EOQ expression
(the case with a = b = 1). We can be reasonably sure as a result that demand
points do not have to be enclosed in influence areas of the precise size for a
solution to be near-optimal
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o For example, if (i) moderately priced goods have to be delivered to fixed retail
outlets, (ii) vehicles can make multiple stops, and (iii) no terminal economies
of scale exist (g = 0), then the cost function consists of a constant, a term
proportional to /*/2 and a term proportional to /~1/4.

@ Then, | could be 1.5 times larger or smaller than /* and cost would only
increase by about 1%. Although not quite so robust, the example about to be
introduced exhibits a similar behavior.

@ Among those problems explored (involving various underlying metrics, deliveries
of people and goods, routes with and without multiple stops, deliveries to
fixed retail outlets, and individually located customers, etc...), the example
corresponds to the set of conditions that makes the cost most sensitive to /.
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EX

@ Here we consider a region R with constant A and §. Line-haul vehicles shuttle
between a distribution center and consolidation terminals.

@ Neither local nor line-haul vehicles are allowed to make multiple stops because
the cost (and delay) of a stop is large compared with that of the moving portion
of the trip. This could happen for air transportation of valuable goods.

@ In our case, local transportation vehicles pick up their loads at the consolidation
terminals and distribute them (non-stop) to destinations scattered over the
terminals’ influence areas. Local vehicles are assumed to have a small capacity,
Vmax, and to travel full; i.e, the solution to the minimum combined cost is
ns =1 and v= vpax.
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@ To make things easier we also assume that the pipeline inventory cost and rent
costs can be neglected; i.e., ¢y, = ¢;. We then see that the minimum cost is of
the form:

a1 + 2rcy cpo
zo(A\, r,0) = — + (4 Vimax = constant + ” + =\ Vimax-
max max

The expression is a direct result since the local distance vanishes as ng = 1 and
the average customer demand rate is D' = \/§
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To simplify the notation, we will ignore the constant term and introduce two con-
stants “a" and “b" (a = ¢pd and b = 2¢,4/2.7) so that:

aVimax 2.7b
ZO()‘a r76) = T + (Vi

)r.

The first term is the stationary holding cost and the second term, the component of
transportation cost that is sensitive to distance. For this example, zy is independent
of §, and so is the outbound cost function*:
av, b

max + /1/2.

Vmax

22\, 6, 1) =

*22(N, 6, 1) = zo(\,0.38/42,8). 3k M AT @it 4F r A iAo, 0.381/2 3£4%,
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@ Inbound transportation to the terminals is assumed to take place on larger
vehicles, of capacity V. ., > Vmax and cost per mile ¢, operated at capacity so

that the cost Z*(\, r, /) will be (for a demand rate D' = \/):

Zi(/\,r,/)zm+a4\/ = constant +£+i\/

max max
‘/max mEIX AI

e Using & = ¢, b/ = 2}, again and ignoring the constant we can write:

. V. b
20 ) = (a ;) <+ <‘/r>

The first term of this expression represents inventory cost, and the second the
cost of overcoming distance. Inventory cost must increase with the number
of destinations; as such it is proportional to I~1. Other costs (handling, etc.)
that don't depend on I, r, or A would appear as part of the omitted additive
constant.
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o Let us assume that terminal costs are proportional to flow (cwg = 0). Then they
can be ignored, and the optimal influence area size is the result of a trade-off
between the cost of overcoming outbound distance from the terminals (%/1/2)

and the stationary inventory cost from inbound distribution ((%) 1); the
solution is:

=

bA

Therefore the one-transshipment cost is:

23 , 1/3
* Vimax b'r b a
~ — +1. —V )
Zi ~a 3 + v +1.89 (Vmax Y, Vimax

max

[23/ Vinax Vi } 2/3
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2/3
I* ~ 2alvmax‘/max / .
B bA

@ The optimal size of the influence area increases with the 2/3 power of the
vehicle capacities and decreases with the 2/3 power of the demand density; it
does not depend on the distance, r, from the distribution center.

@ This is logical, because changing r does not alter the terms traded off.

@ These qualitative conclusions, however, are specific to the conditions of the
example.
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@ To see how they would change, assume that the inbound vehicles, still restricted
to making one stop, now can carry as many items as desired (V,,, = o0).

Then, the loads carried would be the result of an EOQ tradeoff, and instead
of Z(\, r, 1) = (i/{"ax) i+ (‘f/’) we would have:

max

: b\ Y2 2Vimax abr\?
z’(/\,r,/)=2<)\l> andl*-( b ><)\> .

@ The optimal solution is no longer insensitive to r; it grows with r as indicated
earlier. It also varies with a smaller power of A and a larger power of Vpax.
The optimal cost also depends on r and A, although somewhat differently:

o b 1/2 /b/ 1/4
z;‘gavA +2.83<v ) (aAr> .
max
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@ It should be easy to design a system with influence areas close to /* for most
points. Failure to select an / equal to /* does not result in large increases in
cost. For both examples a 30% deviation from /¥ results in a cost increase
below three percent; for 20% deviations cost increases less than 1%.

@ These percentages refer only to the two cost terms that depend on /; otherwise,
the percentages would be even smaller. The dependence of cost on / (and its
sensitivity to errors in A and d) tends to weaken even more when multiple stops
are allowed; the conditions of the example are unfavorable.
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© Refinements and Extensions
@ Schedule Coordination
@ Constrained Design
@ Variable Demand
@ Discriminating Strategies
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Refinements and Extensions

This section addresses the following subjects which are extensions to the simple
model of the previous section:

@ synchronization of the inbound and outbound transportation schedules to re-
duce terminal holding costs;

@ treatment of location/routing constraints cutting across distribution levels;
© consideration of time-varying demand, with and without uncertainty;

@ development of discriminating strategies when conditions warrant
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@ The analysis addressed previously was possible because inbound and outbound
vehicle routes and schedules from the terminal could be set independently
of each other. This decomposition allowed the results of the 1-to-N system
without transshipment to be invoked, yielding simple inbound and outbound
cost expressions.

@ Because some of the extensions explored in this section link the inbound and
outbound operations, a conditional decomposition method is used repeatedly.
It entails the identification of suitable decision variables, conditional on which
the problem decomposes across levels. A similar approach is recommended
whenever inbound and outbound operations are coupled.
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Schedule Coordination

@ |t was assumed that inbound and outbound operations were independent. Yet,
terminal holding costs can be reduced through synchronization. (Our previous
lectures showed how synchronization of transportation and production sched-
ules could reduce holding costs; something similar happens here).
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Without coordination in production and distribution

Produced items

CUMULATIVE NUMBER OF ITEMS
SPECIFIC TO DESTINATION n

TIME
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With coordination in schedules

cumulative
items produced
1
D'(Hg-H); _L
maximum
accumulation d D'

Hs
H
Cumulative items sent;

- with coordination
I~——without coordination

CUMULATIVE NUMBER OF ITEMS
SPECIFIC TO DESTINATION n

: inventory time saved by coordination

TIME

The departure curve had been shifted to the left by an amount H.
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@ If we restrict the inbound headway to the terminal H' to be an integer multiple
of the outbound headway H°, or the other way around, then it is possible to
synchronize the arrivals and departures

@ This synchronization allows the average time in the terminal to be reduced by
the smaller of the two headways: min{H’; H°}. Then, the maximum accumu-
lation is reduced by A\/min{H'; H°}, and the terminal cost per item becomes:

as + ag/l — min{H', H°}[c; + ¢/,

which no longer is independent of H' and H°.
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Conditional decomposition

@ The method we are about to present works even if the outbound headways from
the terminal are not equal for all the delivery districts; but we shall assume for
the moment that they are.

@ The total cost will be expressed as a function of /, H' and H°. Conditional on
these three variables (instead of only one,/), the total logistic cost per item
decomposes in three independent components: (i) an inbound motion cost,

z; (ii) an outbound motion cost, z%,; and (iii) the terminal costs plus all

holding costs. Thus, the new logistic cost function is expressed as follows:
2o\ I HY + 22, 0, 1, HO) + (¢ + ¢) max(HC; HY) + (as + agl™?),

where we have assumed that the rent costs only need to be considered for the
terminal.
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Conditional decomposition

@ If rent costs at the origin and the destinations cannot be neglected then a term
of the form ¢,(H' + H°) should be added to the expression.

@ In this case, the headway choices may differ from those recommended below.
In both cases, however, the choices arise from the minimization of a simple
logistic cost function of three variables: I, H" and H°.
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Conditional decomposition

2O HY + 22N 0,1, HO) + (¢ + ¢) max(HO; HY) + (as + agl™t),

@ The inbound motion cost term assumes that the inbound routes have been
optimized for the given set of terminals and inbound headways, independently
of all outbound decisions. This cost can be estimated by the minimum of the
first three terms of agy + s‘—slv + %2 4 azns with respect to ng for agiven v since
the delivery lot size to a terminal v is fixed by H' : v = \IH..

@ We are pretending here that the terminals are the final destinations. The
outbound motion cost for delivery to the customers can be obtained in a similar
way, also conditional on the delivery lot size to the customers, v = (\/d)H°.
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Conditional decomposition

@ For most problems the inbound and outbound cost per item, z’;n and z2,, will
be decreasing (or non-increasing) functions of H' and H° respectively.

@ This is logical since with longer headways more goods will have accumulated
with every dispatch and they can be distributed more efficiently*.

*This assumes that vehicles make many stops and therefore it is only true up to a point. Once
H' (or H°) is so large that each destination requires a full vehicle load on each visit, increasing H
is no longer beneficial.
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Conditional decomposition

2o L HY + 25N, 6, 1, H) + (¢ + ¢) max(H; HY) + (as + agl™t),

o It follows from these properties that the least cost is achieved when H' = H°;
it should be clear that if the smaller of the two headways is not equal to the
other, increasing the smaller one until it equals the largest will reduce cost:
clearly, the holding cost does not change, and we have already said that the
motion cost declines with an increasing H. Thus, we let H = H° = H, so that
the expression becomes:

Z (L H) + 2506, 1L H) + (¢ + ¢ )H+ (a5 + agl™Y),

whose minimum (¥, H*) is the desired solution.
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Conditional decomposition

@ To find it we can hold [/ constant and minimize the first three terms, the
inbound plus outbound costs, with respect to H; the result is of the form:

25O D+ 2506, + (¢4 c)HE() + (a5 + agl™Y),

where H*(/) is the optimum headway for a given influence area size. This
expression can now be used for design purposes.
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Conditional decomposition

@ Schedule synchronization takes some effort and may add to the total cost
because the operation of the system is more complex.

@ Obviously, it should only be used if the gains outweigh the complexity penalty.
The higher the time value of the items the larger the gain and the more desirable
synchronization becomes.
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Different outbound headways

Suitably modified, the approach we have described can be applied when the influence
area is not homogeneous; e.g. if A and d change within the influence area

SECTOR 1
(Many customers, short headways,
and small districts )

SECTOR 2

\nipound
Terminal

Depot

SECTOR 1

SECTOR 2

(Few customers, longer headways,
and large delivery districts)
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SECTOR 1
(Many customers, short headways,
and small districts )

SECTOR 2

\nbound
Terminal

Depot

SECTOR1

SECTOR 2

(Few customers, longer headways,

and large delivery districts)

HhRBRE B

@ The vehicle routes to parts of the

influence area with different charac-
teristics (or sectors, j) ought to have
different numbers of stops and dif-
ferent headways, HJ‘?.

These sectors should be no smaller
than the districts covered by one ve-
hicle. Of course, this restriction is
irrelevant if vehicles make only one
stop.

51/095



2O HY + 22N, 0,1, HO) + (¢ + ¢) max(HO; HY) + (as + agl™t),

@ The decision variables are I, H' and {HJ"} If the outbound headways are
multiples or submultiples of H', then the expression holds with the following
modifications: (i) the outbound motion cost is the demand weighted average
of the costs of each sector, 25, (A, 4,1, H?), and (ii) the waiting cost is the
demand weighted average of (c, +c) max{H’ HeY.

@ As before the z° are decreasing functions of Hf , and thus outbound head-
ways should be no smaller than the inbound headway. Most likely,
and even if the demand is quite heterogeneous within |, the solution with
HJ‘? = H' = H will be close to optimal, and we can obtain H*(/) in the same
manner as we described.
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@ A more accurate approach described in the above mentioned references would
find first the optimal { H?} conditional on /and H'. This is easy because each H?
can be obtained independently of the others as the result of a trade-off between
the outbound transport cost in its sector alone, and the corresponding waiting
cost: (¢ + ¢,) max{H, H¢}. One could then find the optimal H' and I, either
numerically or analytically.

o Even if the H} are not restricted to be integer multiples of H', the optimal
solution is an integer multiple of H'.
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Further reductions to holding cost

@ In the discussion of dispatching strategies it was assumed, even when the
schedules were coordinated, that the space needs at the terminal were the sum
of the space needs for all the outbound destinations from the terminal.

@ This assumption is conservative because it ignores that the need for storage
space can be reduced if one staggers the delivery schedules
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o If vehicles depart the terminal once every two days for points in the influence
area, we implicitly assumed that the maximum accumulation occurred at the
same time for all outbound routes.

@ But if some of the routes (1/2 of them, say) depart on even days and the other
half depart on odd days, then the maximum accumulation will be reduced.

o It will be more difficult, though, to coordinate the deliveries to the terminal with
the improved staggered schedule from the terminal. Obviously, the advisability
of staggering outbound dispatches will depend on the specific situation. In any
case, the methods we have introduced still apply.
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Constrained Design

@ Here we address two types of design restrictions, which influence the solution
approach in different ways: (i) constraints to individual decision variables, and
(ii) constraints to sets of variables.

@ The first type of restriction arises in connection with tactical problems, which
are used as an illustration for the solution approach to (i).

HHBRFE B %12 A 56 / 95



Tactical problems

o If some of the decision variables are fixed, the optimization process is often
simplified. This situation is common for short term problems, where the ter-
minal locations are given, but the vehicle schedules and routes need to be
determined.
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o If so few terminals are available that all should be used, then each influence
area will be greater than ideal. One could then easily carve the region into
influence areas around each terminal, perhaps allocating every customer to the
nearest terminal.

@ ldeally, one would like to allocate customers using a marginal cost rule, ensur-
ing that customers near the boundaries are not better off in the neighboring
influence area, but this is quite laborious and unlikely to change the size of the
influence areas enough to matter for cost calculations. (A marginal allocation
is reasonable because outbound distribution costs per unit area Azg(A, r,d) in-
crease with r and as a result the total cost is convex in the zone dimensions).

@ Once the partition has been completed, a cost estimate — as well as the
optimal headways and routes — can be obtained for each influence area by
minimizing an appropriate logistic cost function (consists of terminal, inbound
and outboutn) with a fixed /.

@ Finally, the detailed solution can be finetuned by computer by testing whether
marginal customers near the boundaries should switch terminals.
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o If there are so many terminals that we don't know beforehand which ones
should be operated, a preliminary step should be taken to make this decision.
Based on the given arrangement of terminals, we would define a minimum
feasible influence area size, Inin(X), as a function of position. We would then
obtain for different values of x an ideal influence area size, [*(x), by minimizing
the total cost subject to /(x) < Inin(X); the result would then be used to decide
which terminals to operate.

@ Of course, if there are considerably more terminals than needed this constraint
plays no role. Then, the terminals can be selected based on the solution to the
strategic problem.
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@ In the short term we may also have to account for restrictions in the flow
through some of the terminals, which essentially impose a limit on the size of
their influence areas. If such flow restrictions can be translated into an upper
bound restriction to /(x), I(x) < lnax(x), then the preliminary step can still be
carried out as indicated. The detailed allocation of customers to terminals dur-
ing fine-tuning, however, must recognize the existence of the flow restrictions.
The optimal allocation can be obtained by linear programming.

@ If one thinks of terminals as sending a flow equal to their capacity to des-
tinations requesting a flow equal to their demand, and we include an extra
destination to which the slack capacity is sent at zero cost, then the flow
allocation problem reduces to the Hitchcock transportation problem of linear
programming.
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@ For our problem the costs have a special structure that relates to the geograph-
ical distribution of customers; i.e., customers that are close geographically have
similar costs from all the terminals.

@ As a result, it is not difficult to prove that the set of customers to be served
from any terminal should be a well defined region around the terminal. Thus,
if the terminal capacities change, only the boundaries to the regions should
move.
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Multilevel constraints

@ The problem just discussed was viewed as a design problem with a constraint
on the size of the influence areas. Constraints affecting only inbound, or only
outbound, logistic operations are also easy to incorporate; one simply needs
to make sure that the expressions for inbound and outbound motion costs, z,,
and 27, properly reflect the effect of the constraints.

@ We have already seen how to develop these expressions under a variety of
conditions in the 1-to-N problems without transshipment.
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@ Constraints that cut across levels are a different matter. This occurs, for
example, if there is a maximum time allowed for an item between the origin
and the final destination, or a limited transportation budget and/or fleet size
for both distribution levels.

@ Multilevel constraints like these, can be captured with an extra level of de-
composition. In addition to /, H and H°, one should include one or more
conditioning variables that will decompose the logistic cost function into inde-
pendent subcomponents.
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@ For an example in which total time is limited to an amount tmax , e.g. for
the distribution of perishable items, we could use maximum times for the
inbound and outbound operation, (SX and tE";;X and write the equivalent of
2L\ L HY + 22,(N, 8,1, H?) + (¢ + cp) max[HO; HT] + (as + agl™1) also as a
function of t'(“fsx and t'(””sx The resulting 5-variable logistic cost function can
be minimized subject to constraints on t'(“l"jx and t'(g"jx that will ensure t™® will

not be exceeded (e.g. #j} + 5} + max(H', H°) + H' < tmax).

@ A solution to this problem, for a newspaper delivery network, is discussed in
Han (1984) and Han and Daganzo (1988). For this problem, in contrast to
most other applications, as one moves farther away from the depot both the
size of the influence areas and the length of the delivery routes decline
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We now discuss stochastic and deterministic demand variations
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Stochastic demand

@ Here we examine the implications of random (unpredictable) demand at the
destinations. Random demand requires extra inventories at the destinations
and also at the terminals.

@ We will first see that the decision to hold a certain safety stock at a destina-
tion can be separated from the routing decisions, conditional on the inbound
and outbound terminal headways. A similar decomposition had been already
introduced for one-to-one distribution problems
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@ We will then examine the need for inventories at the terminals (warehouses).

o We assume that the safety stock carried by a customer (destination) depends on
the time between deliveries and requests. With deliveries to many customers,
however, it is unreasonable to assume that one would dispatch on request, at
the precise time when the customer request arrives, lots of specific sizes; it
would then be impossible to construct “peddling” delivery tours.

@ Rather, one would attempt to coordinate deliveries to all the customers by
establishing a dispatching schedule from the terminal at headways H° — a
decision variable — and allowing customers to decide whether or not they

desire a delivery on any given dispatch as well as the size of the delivery,
v> DHe.
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@ For this operating scheme the inventory accumulation at a destination depends
on the fixed lead time and on H°, but it is independent of the transportation
routing decisions.

@ The solution to problem 5.6 reveals that the holding cost per item includes: a
term proportional to v, cyv/DY, that represents the load make-up cost, a safety
stock component that increases slightly with H° but is independent of v, and a
new term, c,H°, that captures the discreteness of the transportation schedule.
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@ Then, conditional on I, H and H°, the customers’ decisions about v are in-
dependent of the routing decisions; the problem decomposes. Transportation
costs decrease with H°, while holding costs increase. To enforce rational cus-
tomer behavior, e.g. discouraging small orders, we will pretend that an amount
Cp is charged to the customer for each delivery.

o Whether real or fictitious (if the customers are part of the same firm) this
charge can be used to control the customer lot sizes and in the process achieve
some overall goal such as maximizing profit, minimizing the sum of costs to
the supplier and the customers, etc... We show below how the various logistic
cost components can be expressed as functions of /, H°, H' and c,.
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@ Aside from additive terms independent of v, the motion cost per item paid by
a customer will be ¢,/v and the holding cost will be (c,/D')v. The optimal
lot size chosen by the customer is thus the result of an EOQ tradeoff between
those two costs: v* = [c,0'/cy]'/?, provided v* is greater than D/H®; it is
D' H° otherwise. Such a customer would place an order on one out of every
v¥ /(D' H°) dispatches, on average.

o If all customers were roughly alike, the reciprocal of this ratio would also
represent the fraction of customers requesting service. The effective density of
delivery stops J. in the region would then be:

be = d{min[1, D'H°(c,D' /cp) ~¥?]}
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@ The average cost paid by a customer per item delivered is also the result of
the EOQ trade-off:

customer cost/item = 2(%2")12 4 cpHe + constant, if v¥ = D'HP
o5 + chH° 4 cyHO + constant,  otherwise

@ Note that this expression is an increasing function of cp and Ho . In other
cases (e.g. with different customers or other reorder strategies) the lot size,
stop density and cost relationships would be similar; in particular, the effective
stop density would still be a non-decreasing/non-increasing function of H° and
Cp-
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@ This effective density, together with H° and [ determines the supplier's out-
bound motion costs from the terminal, z7. Inbound motion costs are also
determined from H' and /.

@ Both the inbound and outbound motion costs are insensitive to fluctuations
in the number of items dispatched from the terminal every H° because these
costs only depend on the average terminal throughput A/
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@ The supplier’s holding costs at the terminal would increase with the fluctuations
in the number of items demanded per dispatching headway. Of order [\/H°]'/2,
however, the fluctuations should be small compared with the mean [A/H°]
because influence areas contain many customers.

@ The added warehousing costs should be small compared with the deterministic
holding costs, which in turn are small compared with the motion costs. As a
result warehousing costs can be neglected as a first approximation, and terminal
holding costs can be approximated by a simple function of H', H°, and /.
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@ The sum of the inbound, outbound and terminal costs captures the supplier's
logistics cost per item as a simple function of c,, /, H° and H'. It is then a simple

matter to obtain the c,, I, H° and H' that minimize any desired combination of
the supplier and customer costs
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o If desired, the analysis can be refined by including warehousing costs at the
terminal. These costs are likely to be significant only if the demand is highly
variable and unpredictable, and order response time is critical. Although, there
is an extensive body of literature on inventory control for a hierarchical system
of warehouses very simple models should suffice for our purposes; sensible
decisions can be reached without resorting to very detailed models.
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@ Problem 5.7, an illustration, describes a situation where warehousing costs
must be traded-off against transportation costs. In the problem, order response
time is so critical that individual items are delivered immediately upon request
from warehouses by a very expensive and expeditious transportation mode.
Cheap transportation is used to feed the warehouses. The influence area size is
the key decision variable for this problem because warehousing costs decrease
with / (with larger [ the fluctuations in throughput are smaller) but the number
of expensive vehiclemiles traveled increases with [ (since the distance traveled
per item is proportional to //2)
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When the ratio of inventory cost to local distribution cost is sufficiently high ware-
houses should pool risk by operating in clusters that can share inventory by coor-
dinating their local distribution. This has the potential to reduce cost even more.
Two different cooperation methods are possible:

@ periodic redistribution of goods as per a transportation problem of linear pro-
gramming (TLP);

@ continual re-balancing by serving customers roughly equidistant from two ware-
houses by the one with the least inventory. The automobile industry essentially
uses an extreme version of this method — since automobile purchasers are usu-
ally served by the nearest dealer having the desired car.

Hybrids of the two strategies can also be used. Hierarchical schemes, where a lead
warehouse holds extra inventory for potential redistribution, can be used as well,
but they are less efficient than (1).
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@ Strategy (1) should be optimized by treating the influence area size, cluster size,
safety stock level and re-balancing period as decision variables. The objective
function for scheme (1) is easy to write using the expected distance formula
for the stochastic TLP*.

@ In case (2), the re-balancing period is not an issue. The objective function
for (2) is more complicated - since the safety stock level affects the frequency
deliveries from the second or third-nearest warehouse in a nontrivial way - but
this too can be done

*Daganzo and Smilowitz (2004)
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Non-stationary demand

@ At the tactical level, i.e. when only vehicle routes and schedules can be
changed, non-stationary conditions do not introduce major difficulties. If the
average demand rate A(t, x), the customer density §(t, x) and the given set of
terminals vary slowly with time the CA approach can be used. First we divide
the time line into intervals with quasi constant conditions. Then, we find the
optimal customer allocations, vehicle routes and frequencies for each interval
independently as if the number of terminals, A and 4, didn’t change with t.

@ The chosen solution and the cost estimated for each interval should recognize
stochastic effects if they are deemed important. For this to be possible, how-
ever, the system should nearly reach a steady state in each interval.
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@ Each solution is then adopted for its time interval. The average cost over time
can be approximated by the weighed average of the costs for the intervals.

@ The strategic problem, including the number and location of the terminals
can be addressed in a similar way if terminals can be opened, closed and
relocated with little cost. If this is not the case the problem is considerably
more complicated because small changes in / from one time interval to the next,
as would result from the CA approach, might require that most terminals be
relocated, and the relocation cost is hard to define.
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o If relocation is expensive we would like to relocate few terminals if / changes
little. In fact, we would like to change only the absolute minimum number of

won won

terminals; i.e. “x" percent of them if | changes by “x” percent.

@ This can be achieved if terminals are located approximately on a square lattice,
and in every time interval the influence area size is restricted to take a value
from the set {2X/y} for some integer K. (Note that if terminals are located on
a square lattice, one can obtain another square lattice with twice the | oriented
at 45° with the old, by eliminating 1/2 of the terminals.)

@ With the [ restricted in this manner, it is a simple matter to define relocation
costs as a function of the change in | from interval to interval. Conditional on /,
then, the remaining costs can be obtained as the solution to the tactical prob-
lem. Thus, it should be possible to use a dynamic programming formulation
to determine the best sequence of I's for a set of consecutive time intervals,
where the dynamic programming stage is the time interval and the state is the
| for the current interval.
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@ More sophisticated methods don’t seem necessary because long term forecasts
as would be needed for strategic analysis are not likely to be reliable. Perhaps
we should take a cue from nature in seeing how a logistic structure should
adapt to changes in its environment without a forecast for future conditions.
As a tree grows taller, new branches overshadow old branches, which may
atrophy and die, but the larger older established branches survive.

@ Because of the “cost” of growing new branches (opening a terminal), the tree
does not totally redesign itself with each change in the environment; rather
it preserves a large portion of its structure and builds on it. Moreover, the
tree adapts to the future without knowing it — at best it uses the recent past
experience as an indication of things to come.
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@ In light of this, and since the logistic cost is not very sensitive to the specific
location and number of terminals, it should be possible to respond to a change
in demand by opening and closing only a small fraction of the total number of
terminals, and still obtain a configuration that will yield near minimal cost for
the new conditions and the anticipated immediate future.
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Discriminating Strategies

@ So far in these lectures we assumed that customers in the same general area
received the same type of service in terms of delivery frequency and type of
vehicle route.

@ No attempt was made to discriminate across customers based on their individ-
ual characteristics. We had seen in the 1-to-N problem that if some customers
are much larger than others, or request substantially different items, it might
be cost-effective to treat them differently, perhaps even serving them with dif-
ferent transportation systems.

@ The same phenomenon can be expected of systems with terminals but the
question is now whether or not all customers should be served through the
terminals; large ones may be better off with direct service.
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Approach

@ The conditional decomposition method introduced in this section can also be
used to explore this possibility. Given a set of terminals, the tactical problem
could be solved by dividing the set of customers into a set that is served
through the terminals and another set which is served without a transshipment,
organizing the distribution process for the two sets separately, calculating the
cost, and then comparing the results for different customer partitions.

@ For the decomposition based on customer partitions to be successful one needs
to focus only on a few partitions that have a chance of being optimal because
the number of arbitrary partitions can be astronomical. Depending on the
specific situation at hand, a set of candidate partitions should not be difficult
to identify based on physical considerations.
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@ For example, if as in the discriminative strategies for the 1-to-N problem with-
out transshipment, the items have different values and the customers have
different sizes, one may prove that the destinations with the largest dollar de-
mand per unit time should be served direct and the rest through the terminal.
This happens because one can reduce the holding cost by swapping customers
between the two shipping methods without changing the transport routes and
cost.

@ This property of the problem allows us to use the fraction of customers that
are served without transshipments, f,, to define the two customer classes and
decompose the problem. The fo leading to the least cost is optimal
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@ The proposed method also applies to passenger transportation problems, al-
though in this case it is somewhat simpler since the partitions are determined
by the passengers and not the analyst. A good example of this type of appli-
cation is Wirasinghe et.al. (1977).

@ This reference examines an idealized situation in which passengers traveling to
a city from its outlying suburbs have the option to travel either directly by bus
(no transshipments) or indirectly by a faster transit system whose stations can
be accessed by means of feeder bus lines. Passengers are assumed to use the
fastest travel option so that proximity to the transit stations and distance from
the city are the main determinants of their choices. Therefore, the resulting
partitions are purely geographical.

@ The reference is noteworthy because it appears to be the first application of
the CA approach to this type of problem.
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ltems with different densities

@ The decomposition approach can also be used when customers differ in other
ways. We have assumed so far that an "“item” is a given volume of a commodity
and that a vehicle can hold a fixed number of items, vpax. Although this is
a fair description for most freight, for some commodities a vehicle will exceed
the roadway axleweight limitations before it is filled.

@ To side-step this problem we can define an item as a unit of weight when the
commodity being handled is denser than the ideal density for the vehicle (the
ideal density is the ratio of the vehicle's weight and volume capacities). All the
discussion, theory and methods presented up to this point also hold for dense
commodities without any modifications.
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@ This of course assumes that all the destinations request items of similar den-
sity, or at least denser than ideal. If some customers are “light” requesting
items lighter than ideal) and others are “heavy"” (denser than ideal) it may be
advantageous to use an asymmetric treatment to exploit the differences.

@ This situation is more likely to arise for collection problems from many suppliers
than for distribution problems; e.g. for the collection of the many different parts
needed at an automobile assembly plant such as foam for seats, nuts and bolts.
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o If a single origin produces many different commodities for a single destination,
it is not difficult to see that the number of vehicle loads needed to carry
the amounts produced in a given time is minimized if one of the following
two conditions is satisfied (Daganzo and Hall, 1985): (i) either all vehicles
reach their weight capacity, except possibly the last one which may be partially
filled, or (ii) all the vehicles reach their volume capacity. Note that one of the
conditions is sure to be satisfied if all the loads are as large as possible while
roughly containing the same mixture of items.

@ This should be clear since all the loads will then be either below or above
the ideal density. As a corollary of this observation we note that if a single
destination is fed without transshipments from many small suppliers producing
different items, then the symmetric collection strategies described in Chapter
4 also minimize the number of vehicle tours.
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@ This happens because if both ""heavy” and “light” suppliers are uniformly
scattered over the area, then the collecting vehicles will automatically tend to
pick up item mixtures with approximately the same density. Without transship-
ments, thus, there seems to be no incentive to discriminate across customers.

@ An exception occurs if light and heavy suppliers tend to form separate clusters,
as illustrated in the above reference; in that case it may be advantageous to
increase the length of some tours to enhance their load composition, thereby
reducing their number. This is in general a complicated problem, whose ac-
curate solution depends on details such as the relative proximity of light and
heavy supplier clusters
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@ Another exception occurs if transshipments are allowed. A case of particular
interest occurs if the vehicles are only allowed to make one stop, but collection
can take place with a transshipment.

@ Suppliers with the lightest and densest commodities have the most to gain
from sending their shipments through the terminal since, combined with com-
plementary commodities at the terminal, they can be carried to the destination
in ideal density loads requiring fewer vehicle-miles.
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@ An asymmetric treatment of customers would then be in order. Problem 5.9,
based on Daganzo (1988), encourages the reader to develop an optimal asym-
metric shipping strategy where the rent for space and the items are so cheap
that holding costs can be ignored; only transportation and handling costs need
to be considered.

@ The solution is obtained by decomposition, conditional on the number of ideal
density truckloads sent through the terminal. As part of the solution, the reader
needs to determine which suppliers — and how much of their production —
should be shipped through the terminal to obtain the conditioning flow through
the terminal
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Any questions?
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Readings

@ Daganzo. Logistics System Analysis. Ch.5. Page 171-194
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