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Overview

@ Symmetric strategies are extensions from strategies for identical customers
@ Asymmetric strategies allow different customer types to be served differently.

@ Conditions under which these more complex strategies are likely to be of benefit
are also discussed here
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© Different Customers: Symmetric Strategies
@ Random Demand: Low Customer Demand
@ Random Demand: Uncertain Customer Requests
@ Dynamic Response to Uncertainty
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Symmetric Strategies

o Let us allow D,(t) to vary across customers n, and possibly to be non-stationary.
With this generalization, even if the demand is stationary, D, can vary across
n.

@ With many customers the individual demand rates should be treated as “de-
tails”, which we try to avoid. To this end, an expected demand density rate
per unit area A(t, x) is used instead of the specific D,(t)'s.

@ A(t,x) is assumed to vary slowly with time and location so that the demand
in a subregion, P,* of R during a time interval [tp_1, tp) is:

tm
J J A(t, x)dxdt.
tm—1 XEPP

*P, is large enough to contain several destinations but of small dimensions relative to ‘R
HHBRFE B %11 A 5/78



o Similarly, we define a customer density, 6(t, x), which is also allowed to vary
with time. Note that we are allowing here for the number and locations of
customers to change with time; all we require is that these changes can be
approximated with functions §(t, x) and A(t, x), that vary smoothly with ¢ and
X.

o Demand uncertainty is an important phenomenon when the tours have to
be planned before the demand is known at the destinations. It will be
captured by an index of dispersion function, as described below.
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o Take a partition {P1,...,P,,...,Pp} of R and a partition of time into con-
secutive intervals 7, = [tm—1, tm), and let Dy, represent the actual number

of items demanded in P, during 7p,.
o The parameter A(t, x) can then be defined as the average demand rate density,
so that S:’”il §..p A(t, x)dxdt now gives the mean of Dj.

o We assume that, for any partition, the variables D, are independent, and
identically distributed. Then their variance can be expressed as:

xePp,

var{Dimp} = f At )7 (£ x)dxdt
Tm Pp

where (t, x) is an “index of dispersion”, with “items” as its physical dimension.
Y(t,x) B WIEIEAT, KD EZWNAKE
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var{Dpp} = Lm J;P A(t, x)y(t, x)dxdt

@ A special case of this model arises if each customer’s demand fluctuates inde-
pendently of other customers, either like a stochastic process with independent
increments — such as a compound Poisson process or a Brownian motion pro-
cess.

@ Although in most cases a fixed v should capture demand fluctuations well, we
allow ~(t, x) to vary slowly with t and x. An index equal to zero represents
known demand; no uncertainty. This case will be examined next.
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Recall the LCF:

1 1
Z= Qg+ 01— + Qp— + (3N + QygV.
nsv v

where the ag, ..., a4 are the following interpretable cost constants:

ap = (. + ¢ir/s + ¢its/2); handling and fixed pipeline
inventory cost per item,

a1 = (2rcqg + ¢5); transportation cost per dispatch,
ap = (cdk6_1/2 + ¢s); transportation cost added by a customer detour,
a3 = 1/2¢i(kd~?/s+ t,); pipeline inventory cost per item caused
by a customer detour and the ensuing stop,
a4 = ¢p/D'; stationary holding cost of holding one item during the

time (1/D') between demands.

The constraints are ngv < Vmax and ng > 1.
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@ For consistency with the literature, we continue to use H(t, x) and A(t, x) as
the decision variables instead of ns; and v. Both formulations are equivalent,
since there is a 1:1 correspondence between two sets of variables—the number
of stops in a tour is the number of customers in its district, which is given
by ns ~ 0(t,x)A(t,x), and the delivery lot size is the consumption during a
headway in the area around a customer: v =~ A(t, x)H(t, x)/6(t, x).

@ Making these substitutions in the LCF and the constraints, and recognizing
that D' = \/§, the cost per item at (t, x) can be expressed as:

01 002 | s Ay cH+
z=——+ — 4+« c e
AXH  xH TR 0
where ay, o and a3 are the constants defined in connection with LCF opti-
mization problem, which now can vary in both time and space; the constraints
become: AAH < Viax, 0A = 1, and AH < V4.
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@ The important thing to remember here is not new expression for LCF, but the
process followed to derive them and use them. This process is quite general
and can be used for problems involving various peculiarities.

@ Because it is impossible here to discuss all possible situations, the process
is only illustrated with three examples involving stochastic phenomena and
requiring some modifications to the equations.

@ The first example arises where items are indivisible and the expected de-
mand per customer per headway is less than one item;

@ The second when the customer demands are not known until the vehicles
make the stop

@ The third when the vehicles make coordinated adjustments to their routes
as demand information becomes known.
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Random Demand: Low Customer Demand

_ o, S
Z—A)\HJF )\H+5a3A+ChH+ozo

s.t. MH < Vpay, 0A > 1, and AH< V6

min

@ It implicitly assume that each customer is visited each time — the number of
stops is equal to dA. But if items are indivisible (as opposed to fluids, or very
small items) and the demand by individual customers is so low that some have
no demand during a headway, their stops can be skipped. 1% & K % ¢4
4 BB R BLIE T o4 1 18] BT AR o

@ For some demand processes, the proportion of stops that can be skipped should
decrease with H as exp(—H/H) 'where Hy is a constant that depends on t and
x. If the customers in a subregion are alike and their demand is well described
by Poisson processes*, then the parameter Hy is the average time between
successive demands at one destination; i.e., Hp = D'"" = §/A. For other
processes the relationship is similar.

L E R RGN AAAEAER, TR 8T 8] 8 AR ANGE H A
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Random Demand: Low Customer Demand (cont.)

o The effective density of stops is only §[1 — exp~ /],

@ This expression must be substituted for the parameter § in the expressions for
(darz) and (daz) (remember that § also appears in ap and a3). The optimiza-
tion and design process can be carried out as described earlier. Although the
resulting optimum is slightly more complicated, two extreme cases are quite
simple.

o First, if H » Hy then the density of stops is § as before; the solution does
not have to be changed. The opposite extreme case with H « Hp, arising
for example if 6 — oo but D' — 0, also admits a simple expression for the
stop density, even if the demand varies across customers. The expression is
0H/Hy ~ AH* if items are not demanded in batches; then the number of vehicle
stops per tour, (AH)A, equals the vehicle load AHA as one might expect.

* R BLE BB BT SR, R LR AR AL ATRENSRE AN E RE
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Random Demand: Uncertain Customer Requests

_ o, 0o
Z_AAH+AH+6Q3A+ChH+aO

s.t. MH < Vipayx, 0A > 1, and AH < V6

min

o If a3 is small* we have seen that the minimum logistics cost will be such that
AAH = vpnax. There is an incentive to dispatch totally full vehicles.

@ Let us now see what modifications are needed if the exact demand on a vehicle
route is not known accurately when the vehicles are dispatched.

@ The system of interest operates with a headway (e.g., daily, weekly, etc.) to
be determined, and advertised to customers as a service schedule that is to
be met even if the volumes to be carried change with every headway. This
scenario can arise for both collection and distribution problems, although for
distribution problems of destination-specific items the demand will normally be
known.

*It implies that items are cheap
TA case with expensive items is not considered here because if time is of the essence, it is
unlikely that one would operate with imperfect information
HHBRFE B %11 A 14 /78



Random Demand: Uncertain Customer Requests (cont.)

R S L
min Z—A)\H-i- )\H+(5o¢3A+chH+ao

s.t. MH < Vimax, 0A > 1, and AH < V6

o If the size of each delivery v, is both known and small compared with v,y it
should not be difficult to partition the service region into delivery districts of
nearly ideal shape with Zn Vp, & Vmax. Then, the distance formulae hold and
the LCF can be used without modification.

@ If some delivery lots are comparable to the vehicle's capacity, the routing prob-
lem is more difficult because one needs to balance the incentive for filling a
vehicle by delivering a right lot size to an out-of-the-way customer with the
extra distance that one would have to travel.

HHBRFE B %11 A 15 / 78



Random Demand: Uncertain Customer Requests (cont.)

@ In view of the above, our discussion is phrased in terms of collection, although
hypothetical distribution problems with uncertain demand would be mathe-
matically analogous.

@ For collection problems some of the vehicles may be filled before completing
their routes, which would cause some of the demands to go unfulfilled.
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Random Demand: Uncertain Customer Requests (cont.)

@ The overflow customers (still needing visits) could be covered in the same
headway by collection vehicles with unused cargo space or, failing that, by
vehicles dispatched from the depot.

o Clearly, if some vehicles can be rerouted before returning to the depot, some
distance can be saved. Dynamic routing introduces modeling complexities that
will be discussed later. For now we assume that all the overflow customers
are visited by a separate set of secondary vehicle routes based at the
depot and planned with full information.

@ This information is gathered by the original (primary) vehicles, which are as-
sumed to visit all the customers. Because items are “cheap”, secondary vehicles
should also travel full.

HHBRFE B %11 A 17 /78



Random Demand: Uncertain Customer Requests (cont.)

@ The decision variables are A and H, as before, but now the capacity constraint
must be replaced by an overflow cost which depends on A and H. A new
trade-off becomes clear.

o If the average demand for a tour satisfies AAH < vinax, then the overflow cost
will be negligible, but most primary vehicles will travel nearly empty.

@ On the other hand, if AMAH & vihayx, a larger number of customers will overflow
on average—the actual number will depend on the variability of demand as
captured by its index of dispersion, ~.
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Random Demand: Uncertain Customer Requests (cont.)

T B
min Z_A)\H+ )\H+5a3A+chH+ao

s.t. MH < Vimax, 0A > 1, and AH < V6

@ Instead of a total cost per item, we work with a cost per unit time and per
unit area. For given A and H, the transportation cost per unit time and unit
area for primary tours is approximately independent of the overflow; it is well
approximated by the product of the constant factor A, and the first two terms
of z

(6751 50&2

AH = H

Strictly speaking, this expression is an upper bound because it ignores the
local delivery distance that it is saved by the stops that are skipped.

HHBRFE B %11 A 19 /78



Random Demand: Uncertain Customer Requests (cont.)

o Note that, especially when the fraction of tours overflowing is small, the
overflow customers will tend to be geographically distributed in widely
spaced clusters of customers corresponding to overflowing tours. Be-
cause the overflow transportation cost formulas with clustered destinations are
more complicated, two simple bounds will be used instead to approximate the
secondary distance traveled*. #& & & 69 5 B Hi

@ It should be intuitive without a formal derivation that smearing the clusters
uniformly over R increases the distance traveled, while collapsing them into
a single point decreases it. Upper and lower bounds for secondary distance
are derived below, imagining that clusters are either spread or fused in this
manner.

*Blumenfeld and Beckmann, 1984, have developed formulas for VRP's with clustered demand
points
HHBRFE B %11 A 20/ 78



Random Demand: Uncertain Customer Requests (cont.)

i B 1B R R A

@ An expression for fy, the fraction of items that must be delivered or collected
as overflow, will be derived shortly.

@ Assume for now that fy is given. Then the number of secondary (overflow)
tours per unit area is AHfy/vimax™, and the number of stops is close to fd.

@ This expression implies that the fraction of items overflowing is the same
as the fraction of customers; the expression is exact if primary vehicles don't
deliver (or collect) partial lots, and is also a good approximation in other cases.

AH ZRBAGE RS, BRI vmax 2T EZREFMSGMER, BRI f &4 8 BE T
RS- 64 JiR 54
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Random Demand: Uncertain Customer Requests (cont.)

RERENH) BT A0, WIZMYIES
o With de-clustered overflowing customers, the upper bound to the secondary
distance per unit area is thus:

2rAHfy,

Vmax

+ k(fy6)M2.

We are assuming here that the total number of customers is greater than the
squared number of stops per vehicle: Nfy » (Vimaxd/AH)?

o With perfectly clustered groups the density of stops equals the density of
incomplete primary tours. If we let gg denote the probability that a tour
overflows, then this density is go/A; thus a lower bound for the distance per
unit area is:

2r\Hfy

Vmax

+ k(go/A)2.
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Random Demand: Uncertain Customer Requests (cont.)

@ The secondary transportation cost per unit area and unit time is obtained by
multiplying either distance bound by ¢,/H, and adding to the result the cost
of stopping. For the upper bound we have:

2Nfy k()12 M- )
My | k(fod) ]+S<o+o)

overflow transport cost ~cy [

Vmax H Vimax H
pY k(£6)Y/? 6
:al(vo)+ (0/)-/ Cd+ oHCs

o For the lower bound, the factor (f,8)%/? of the second term should be replaced

by (go/A)Y2. If the overflow is so small that only a few secondary tours are
used, Nfy < [Vmaxd/AH]?, then k should be replaced by k' and r should be set
to 0, regardless of position.
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Random Demand: Uncertain Customer Requests (cont.)

@ Either on primary or secondary tours, items reach the destination at regular
intervals, as required, approximately H time units apart. Thus, the stationary
holding cost per unit time and unit area is:

holding cost ~ c,(AH)

@ We are now ready to write the logistic cost function for our problem. In
practical situations one would expect the difference between the upper and
lower bound to be small. Therefore, we will use one of these bounds (the
upper bound) below.
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Random Demand: Uncertain Customer Requests (cont.)

@ In terms of total cost per unit time and unit area (the sum of primary and
secondary transportation costs, plus the holding cost), the upper bound is

/
(a1) | (o) + (0 A Vo + (/«;1/2&,)1[(13‘_/2 + (5cs)% + (Aen)H,

v Vo,

where the parenthetical items are constants and the rest (A, H, and f) are
decision variables. Note that the constant handling cost, ag, has been omitted
from the LCF.

HHBRFE B %11 A 25 /78



Random Demand: Uncertain Customer Requests (cont.)

@ The fraction of items that overflow is related to A and H.

@ Recall the following equations

mean{Dpmp} = J J x)dxdt.
tm—1 XEP
var{Dpp} = J J ~(t, x)dxdt
Tm JPp

The mean and variance of the number of items to be carried by a primary
vehicle are AAH and MAvH. The expectation of the excess of this random
variable over v, is the average overflow for the vehicle.
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Random Demand: Uncertain Customer Requests (cont.)

Assuming that the demand is approximately normally distributed, and letting ¢
denote the standard normal CDF (and @’ its derivative —the PDF), we can therefore
write:

1 «© x— ANAH
x| (= vimado (220
O 5aH ), X ) ((WH)W)

_ AH — Vinax)
_(AAH)y) 2y | PAH = Vinax)
AR [ (VAYH)

where .
V(z) = f, ‘Cb(W)dW: d'(2) + z9(2)

which is a convex function increasing from zero (when z — —o0 ) to oo (when
z— o ). Note that fy may depend on position and time.

AR H R L BiXEEZRAES A B, EBAKRTFT Vinax 1918
Fo Gy EGEHA N AH, 7.
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Random Demand: Uncertain Customer Requests (cont.)

L (a1) | (02) A 12 0 5o
Az = AH+ m +(o¢1vmax)fo+(k5 cd)H +(5CS)H+(/\C;,)H,

@ Thus, Az should be minimized, subject to the expression of fy.

@ The procedure is simple. Conditional on AH, i.e. on the average vehicle load
per district, fy is fixed and Az only depends on H; the optimal headway can
be obtained in closed form from the expression of Az as an EOQ trade-off
involving the 2nd, 4th, 5th and 6th terms of that expression. The resulting
cost is only a function of AH, which can be minimized numerically.

@ The procedure also works for the lower bound, and when the number of sec-
ondary tours is low. For the lower bound one should replace the fourth term
of Az by kcy(go/A)Y/?/H, where go = ®(z). Note that gy is fixed if AH is fixed,
like fy.
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@ Cost estimates and guidelines for the construction of a detailed strategy can
be obtained as usual, by repeating the minimization for a few combinations of
(t, x).

@ We could also verify that the final strategy and the resulting cost do not change
much if the overflow local distance term is replaced by the lower bound.

BHHRBLRFE B#H %1118 29 /78



Dynamic Response to Uncertainty

REHAT, FHGIAET AN EAE

@ In many applications, vehicle routes can be adjusted dynamically during the
course of operation. For example if a collection truck of an express package
carrier falls behind schedule, central dispatch can reassign some of its remaining
customers to currently underutilized trucks. % 3 4% TR E R 69 F £ %
& T bR AR, BUiE 60T KA ABRE S B B AT R E A 8 F £

o If a firm can do this systematically with an efficient control strategy, it should
be able to operate with fewer vehicles.

HHBRFE B %111 30/ 78
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@ To design such a system we must make a single set of planning* decisions
at the beginning of the planning period, e.g., choosing # trucks; and then a
stream of control decisions that change dynamically as information is revealed
over time.

*or configuration
HHBRFE B %11 A 31/78
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To minimize the combination of fixed and operating costs, configuration decisions
must anticipate and accommodate the long-run needs of the control strategy; that
is, the system should be planned for control. This is difficult to do exactly but can
be achieved approximately if we can find a family of control strategies that is:

@ parametrizable (describable in terms of just a few parameters);

@ appealing (containing a near-optimal strategy for the configuration of every
reasonable system);

@ simple (with a predictable expected cost).

Properties (1) and (3) guarantee we can write an LCF that captures approximately
all fixed and recurring costs in terms of the configuration variables and control
parameters. Property (2) guarantees that good control parameters exist for every
reasonable configuration.
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@ Hence, the minimum of the LCF is an “appealing” plan. Since an analytic
expression exists the minimum can be searched effectively with conventional
optimization methods, even if the number of variables and parameters is con-
siderable.

@ The selection of a proper family is more an art than a science. The temptation
is always to look for the most efficient control strategies, excelling at (2), even
if they fail the simplicity test (3). The problem with this approach is that a
search for the optimum configuration cannot then easily incorporate the effects
of control. The result can be gross sub-optimization.

@ For planning purposes we prefer to look for idealized* control strategies that
can be systematically analyzed. This allows us to explore a much larger solution
space when configuring the system. The idealized strategies play the role of
approximations to the more refined strategies during the optimization process,
but the refined strategies can still be used when the system is operated.

*less efficient
HHBRFE B %11 A 33/78
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@ Let us consider again the load-constrained system, but assume now that H =1
day as in package collection systems. We want to configure a system where
vehicles that are partially filled at the end of their runs can cover the overflow
customers of other vehicles. Although very complex dynamic routing strategies
can be designed to achieve this goal, we shall be satisfied with a simple one
that is obviously sub-optimal but improves significantly on the static approach

@ We partition the service region into an inner region close to the depot
(region 2) and an outer fringe (region 1). Only customers in region 1 are
allocated to primary tours. We use only one planning variable: # of primary
service zones in region 1, which equals the number of vehicles m. The radius
of the inner region, rr, is our control parameter.
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depot

Figure: The idealized control strategy has two phases with several steps
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@ In phase one vehicles travel to their service zones (step 1), serve their customers
(step 2), and either return to the depot, if filled, or else stop at the boundary
between regions 1 and 2 (step 3). Unfilled vehicles wait there for the start of
the second phase, until all vehicles are done.

@ Then, they are repositioned along the boundary in anticipation of serving care-
fully designed groups of remaining customers (step 4). The size of these groups
is chosen to be consistent with each vehicle's available capacity. Vehicles first
serve the part of their group in region 1(step 5), then the part in region 2 (step
6). Region 2 customers are arranged in wedges that can be served efficiently
as vehicles return to the depot. Finally, if any customers remain unserved,
they are served with a set of secondary tours (step 7). Note that virtually no
customers require such secondary tours when systems are configured optimally.
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@ This strategy generalizes the static procedure, since the effects of the latter
can be essentially achieved by setting rr = 0. Although the new strategy
is sub-optimal, it has clear efficiencies over the static procedure; thus, it is
“appealing” in the sense of (ii). The strategy also has properties (i) and (iii),
since it* is parameterized by the inner radius ry and is simple.

@ An analytic approximation for the LCF is given in Erera (2000). The approx-
imations in this reference were designed to be most accurate for intermediate
values of rr, where the optimum was expected to be. The formulae are not
given here because they would take too long to explain, but the qualitative
results are interesting.

FEERA LR ARE—BREKFE LT EA it
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Figure: This figure shows how the approximate total distance per day varies as a function
of rr for a test problem, after the number of vehicles m was optimized. The figure also
includes a dotted line from a simulation that used the recommended values of m and rr,
and a more sophisticated control algorithm. This curve gives the actual distance that
could be expected in an implementation.
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@ Reassuringly, the value of r recommended by the optimization (the minimum
of the solid line) yields a near-minimum actual distance. Note from the figure
that this distance is considerably smaller than that achieved with the static
strategy (rr = 0).

@ Erera (2000) shows with a battery of 20 problems that the reduction in the
required number of vehicles is even greater.

@ The portion of the vehicle fleet required by uncertainty (the “fleet penalty” in
Erera's lingo) was reduced by 50% or more in 19 out of 20 cases and by more
than 70% in half of the cases. The median reduction in the “distance penalty”
due to uncertainty, on the other hand was only about 30%.
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© Different Customers: Asymmetric Strategies
@ An lllustration
@ Discriminating Strategies
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The scenario

@ We now explore the advantages of offering different service levels to customers
with different consumption rates and/or different holding costs.

@ Because these differences are likely to be most notable for collection problems,
our discussion will be phrased in these terms — factories and manufacturing
plants typically consume a wide selection of parts and raw materials even
if their product line is homogeneous.

@ Before explaining how asymmetric collection strategies can be designed, we
introduce why they are desirable with a very simple example with two customer
types.

HHBRFE B %11 8 41 /78



The LCF

G S
Z—A)\H+)\H+5(13A+ChH+()éo

s.t. AMH < Vinax, 0A = 1, and AH < V0

min

o Consider a problem with stationary conditions (i.e. A and § independent of
time) obeying the LCF for which it is desirable to fill the vehicles. More
specifically, we assume that: (i) the third (pipeline inventory) term of LCF
can be neglected because items are “cheap”, and (ii) that only constraint
AAH < vihax plays a role because storage room at the origins is plentiful
and the customer density is so large that the ideal # of vehicle stops is sure
to exceed 1. We also assume that the stop cost ¢s can be neglected.
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The LCF (cont.)

a1 (50&2
— 4+ — + cpH+ ap s.t. MAH< v,
ANH \H h 0 max
@ Let us now examine how the optimal system cost depends on A and §. Because
z decreases with A for any H, its minimum is reached for as large a district

area A as possible.

minz =

@ Therefore, as expected, the vehicle capacity constraint must hold strictly: A =
Vmax/(AH). On making this substitution and minimizing the resulting EOQ
expression with respect to H, a simple formula for the cost per item z*, is
obtained.
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o If ag (chH = ay4v)* is replaced by its expression in terms of § and A (i.e.,
ayq = ¢pd/A), and the result is expressed in cost units per unit time and unit
area, the formula becomes:

AZ* = B + (Ba\)V26Y4,

where 81 = ap + a1/Vmax and B2 = 4cpcqk. Notice that A\z* increases at a
decreasing rate with A, and f2; this concavity encourages discrimination

*Recall ay = cy/D' = cyH)v.
*EERA 144 AKX 4.27a £i7
BhARE B& - o



Two different types of customers

@ Suppose that there are two customer types, n = 1,2, with demand character-
istics (A, 0,) and with different ¢y, so that 3, is different for the two customer
types: [32(1) and 52(2). (We use n to index customer classes, instead of cus-

tomers.)
@ Note then that A = \; + X\> and 6 = 61 + 0».
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Separate delivery

If the two customer classes are treated completely separately, as if the other did

not exist, the combined cost per unit time and unit area, instead of being given by
AZ* = 1A + (B2AY2)6%/4, would be:

2

A=) [/\nﬁl + (8 ) . (ﬁ/“]

n=1

; my \? s1/a
=M+ Y (BA) e
n=1
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When this strategy is best?

It is best if:

2 2 2
2 B("))\ 1/251/4 (Z /82(’7))\")1/2(2 5n)1/4 Cauchy-Schwarz Inequality

n=1 n=1

If the two customer types are similar, this inequality does not hold. Therefore,
a symmetric strategy is best: items should be shipped together because with the
higher demand density resulting from amalgamation vehicle tours can cover smaller
zones and save operating costs. This is not always the case, however.

*The inequality holds when 85" A, /612 # {2 5, /622
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When this strategy is best?

2 2 2

Z B(n 1/251/4 (Z 5§n))\n)1/2(2 5n)1/4

n=1 n=1 n=1

@ This will hold if one set of suppliers is highly concentrated d; ~ 0 while
producing many items that are expensive to store (Alﬁz(l) large), and the other
set has opposite characteristics (d; is large but B (2) ~0). F—EBEpHEF
AAETERES,; %R EH 2 oH B A4 A 24

@ Separate service for the two sets is then reasonable because the distribution
strategies for both sets should be different. For the second set one would like
to save operating costs at the expense of holding cost (one would use a large
H in order to reduce the area served by each vehicle) and for the first set one
would do the opposite. % = XAt m % &% A ZAIR F BLiE, R@idE TR
BAETRATEEREA, 5 —ERZ.
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Combined delivery v.s. separate delivery

@ In both cases the local operating costs plus the holding cost ((Bén))\n)l/25,l7/4)
would be close to zero. However, if both items types are combined together,

neither of the factors on the right side ((32_; Y An)Y2(32_, 6,)Y4) of is
close to zero — service has to be moderately frequent because some of the
items are expensive to store, and tours must cover moderate size areas because

all destinations have to be visited.

@ Clearly, the requirements of the two sets of customers interfere with each other,
increasing cost dramatically.
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@ This phenomenon explains why separate logistic systems are used to carry
widely different items in real life, even if from a transportation standpoint
alone it would seem wise to combine them.

@ It should not be surprising to find several transportation modes (taxis, limousines,
buses, etc.) at the disposal of passengers exiting an airport. For freight trans-
portation, the differences in the requirements of various customers are less
likely to merit discriminating service; but the possibility should be considered.
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@ For general problems, the example just described suggests that cost may be
reduced if the set of all customers is divided into classes with different charac-
teristics, served with separate collection systems .

@ For a given set of classes, total cost can be easily estimated — the cost and
structure of near-optimal symmetric strategies would be used within each of
our subsystems.

@ The tricky part is defining the customer subsets that will minimize total
cost. Daganzo (1985) presents a simple dynamic programming procedure to
achieve this goal without detailed customer information — the method only
uses the frequency (probability) distribution of customer characteristics — and
shows in the process that the optimal solution would rarely exhibit more than
2 or 3 classes. When it is found that cost is minimized with only one class,
discriminatory service is not cost-effective.
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@ Although we have ignored the pipeline inventory cost in this lecture, and have
also assumed that the same transportation mode is used for all the subsystems,
this is not a prerequisite for discriminatory service to be attractive.

@ It is impossible to discuss here all the possible cases that can arise in detail,
but a general statement can be made: if customers are very different, then
we should check whether dividing them into a few classes with (highly)
different characteristics — and serving them separately — can reduce cost;
this is unlikely to result in much gain when customers are not very different,
though.
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@ With the approach just described, each customer class n is designed separately
and is characterized by design parameters A, and H,.

@ By restricting these design parameters somewhat, Hall (1985) has developed a
strategy that allows customers from all classes to share the transportation
fleet while being visited at different frequencies. He requires A to be the
same for all customers and each H, to be an integer multiple of the time
between dispatches H, that is, H, = m,H, for an integer m,. He assumes
that vehicles are dispatched at times t = 0, H,2H, etc., visiting each time
(1/mp)th of the customers in every class n. This allows the effective stop
density, >, {d,/my,}, to be greater than for any class alone while ensuring that
individual customers are only visited every m,, dispatches; it decreases the local
transportation cost.

HHBRFE B %11 A 53 /78



LTRSS RN S

@ With the help of fy, a variable denoting the fraction of customers served in
each period, Hall's strategy can be defined without resorting to classes.

@ Accordingly, the symbol “n" now reverts to its original meaning, indexing indi-
vidual customers. We seek the optimal m, for individual customers, as well as
the optimal H and fy. As done at the outset, let us assume that the conditions
are such that vehicles will be dispatched full.
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@ Then, the line-haul motion cost per item is a;/Vmax, and does not depend on
the allocation scheme for customers. The local motion cost per unit time and
unit area is: /2

LO(S) + csiﬁé.

H H

@ This somewhat conservative estimate assumes that stops are randomly and
uniformly distributed within subregions of R larger than a collection district; it
may be on the high side if customers of a similar kind cluster together.

Cdk

@ The holding cost per unit time in a subregion of unit are P is:

> (maH) D,

neP
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@ The system can be designed with a simple decomposition method. Conditional
on 2 and H, the local motion cost is fixed; thus, cost is minimized by the m,'s
that minimize the holding cost. These m,'s, to be consistent with £, must

satisfy:

Z 1/m, = 5.

neP
Once the m, have been found, the conditional total cost is obtained. Testing
various values of £ and H, we can identify a near-optimal solution.

o Alternatively, if one replaces the constraint [m, = 1,2,3,...] by [m, > 1], a
simple approximation for the minimal holding cost for a given # and H can be
obtained. The optimal strategy is then defined by the minimum over £ and H
of the sum of this approximation and the local motion cost expression.
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@ Other Extensions
@ Routing Peculiarities
@ Interactions with Production
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One of the reasons for the very extensive literature on algorithms to vehicle routing
problems is that in actual applications almost every problem has some peculiarity
that renders it unique. We have already seen that there can be a variety of cases
depending on:

@ the relative size of the number of tours and the maximum number of stops per
tour.
the relative cost of rent, inventory, and operating costs.
limitations to route length and storage space

dissimilarity in the values of items and the demand rates at different destina-
tions

© 00O

amount of uncertainty as to the customer lot sizes.
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In addition (and this is not an exhaustive list) one might find situations in which
time enters the problem because customers request service during certain “time
windows”, or there is a limit to the amount of time an item can spend in transit
(perishable items). There also are situations where vehicles do both distribution
and collection (routing with backhauls), and situations where vehicle loading con-
siderations make it advantageous to visit customers in an order which does not
minimize the total distance traveled.
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@ At the core of our proposed two-step method for solving general distribution
problems there should be a simple and efficient routing algorithm, whose per-
formance can be quantified by means of simple formulas using average density
as an input, instead of detailed customer locations. It is then a simple matter
to add holding and pipeline inventory costs to the motion cost to define a
logistic cost function. If routing/scheduling strategies can be defined in terms
of a few decisions variables that are constrained only locally in the time-space
domain, then the minimum of the (constrained) logistic cost function will ap-
proximate the cost generated by items in different portions of the time-space
domain. The CA approach can be used.
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@ Some routing cost models that allow this to be accomplished already exist.
They are now briefly reviewed. Simple transportation cost formulas have been
proposed for time-window problems (Daganzo, 1987a,b). The results show how
cost increases with the narrowness of the windows, and with the proportion
of customers with tight requirements. The proposed routing strategy uses a
different set of delivery districts for the customers in each time window, and
staggers the zones in such a way so as to leave most vehicles in favorable
locations at the beginning of each new window period.
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@ Perishable items such as newspapers (Han, 1984, and Han and Daganzo, 1986),
lead to VRP structures which are similar to those arising from the vehicle
route length limitations discussed in Sec. 4.4.1. The main difference is that
service districts that are far away form the depot should be (i) more elongated
than usual and (ii) covered in a one-way pass that begins at the end of the
district that is close to the depot and terminates at the far end. Although this
modification increases the line-haul distance traveled, it also allows distribution
to begin sooner and the districts to include more stops.
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@ Models with both pick-ups and deliveries have been constructed for public
transportation systems (Daganzo, Hendrickson and Wilson, 1977, Hendrickson,
1978) serving one focal point and a surrounding area. The strategies examined
in these early works, however, are not as general as possible; they only consider
two extreme cases for a partition of the surrounding area into service zones.
More recently, Daganzo and Hall (1990) present an improved cost model for
routing with backhauls, emphasizing cases where the total flow in one direction
(e.g. outbound from the depot) is a few times larger than in the other direction.
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@ The basic idea is briefly summarized below for the case where the dominant flow
is outbound; the reverse situation is similar. One simply constructs distribution
tours as if there were no pickups, allocates each pickup to the nearest return
leg of a distribution trip (or “spoke”), and finally modifies the vehicle tours in
recognition of the newly assigned stops. Because the density of spokes increases
rapidly toward the depot, significant vehicle deviations are only required for
pickups near the outer fringe of the region. Pickup miles on the fringe can be
reduced by ending the outermost delivery tours at the far end of their districts
and by other modifications that are geared to optimize the spatial distribution
of spokes. In fact, it is shown in Daganzo and Hall (1990) that under some
conditions it is almost as if the secondary stops added only a stop cost and
no distance cost. Hall (1993) has applied the concept of spokes to the VRP
problem for deliveries only, in which customers demand large and small items.

HHBRFE B %11 18 64 /78



@ Another complication that deserves attention involves the interaction of vehicle
loading and routing. When items have awkward shapes and are large, so that
only a few fit in a vehicle, vmax may not be fixed; it may depend on the specific
customers that are visited or even the order in which they are visited. The latter
phenomenon may arise if weight distribution restrictions, for example, dictate
that some items (and thus some stops) must be handled before others. This
topic is very complex and hard to handle generally; see Hall (1989) and Ball
et al. (1995a) for example.
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Another area where further results may be desirable involves the interaction of
physical distribution with production schedules. This interaction sometimes offers
an opportunity for further cost reductions.
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@ This subject was broached in Sec. 4.3.3 (Inventory at the origin), where it
was suggested that production of (destination-specific) items should be ro-
tated among geographical customer regions every headway H. Dispatching the
vehicles to a region immediately after its production run was completed greatly
reduced the holding costs at the origin. It was assumed that production would
be coordinated with transportation in this manner without much of a penalty.

@ More likely, though, there may be a set-up cost associated with each switch
in production item types. In this case production costs may be reduced by
switching less frequently and holding higher inventories at the origin. An inte-
grated solution can then be obtained by including in the logistic cost function
the production set-up costs, e.g., as explained below.
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@ If no attempt is made to coordinate the production schedule with the physical
distribution schedule, then the inventory at the origin of items of a certain
type can be decomposed as shown in Figure into a (shaded) component which
depends on the time between setups for that item type, Hs , and a (dotted)
component which depends on the transportation headway, H:

. . . G G
average inventory cost per item at origin ~ 5 + EH'

We are assuming that the number of item types is large and, therefore, the
steps of the production curve are nearly vertical. Similar conclusions can be
reached for few item types.

HHBRFE B %111 68 /78



Produced items

>

y

D

N\

N |

Items
sent

<

7

N

%

!

§‘\\\‘

»

\i

CUMULATIVE NUMBER OF ITEMS
SPECIFIC TO DESTINATION n

-

TIME

Figure: Inventory accumulation when no attempt is made to coordinate production and
distribution
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@ The maximum accumulation also decomposes in a similar manner:
maximum accumulation ~ HsD' + HD

@ Because production costs depend on H; and not on H, the sum of the pro-
duction and logistics costs is made up of two components: (i) a production
component with only production decision variables (including Hs), and (ii) a
logistic component with only logistics variables (including A and H). Logistics
and production decisions, thus, can be made independently of each other.
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By selecting H to be an integer submultiple of Hs, or vice versa, it is possible to
reduce the inventory time at the origin by an amount equal to the smallest of H and
H;, and the maximum accumulation becomes the difference between the maximum
and the minimum of H,D' and HD' .
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Figure: Inventory accumulation with coordinated schedules with Hs = 3H
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@ If this kind of coordination is feasible, the sum of the production and logistics
costs no longer decomposes, and a coordinated production and distribution
scheme should be considered.

@ Blumenfeld et. al. (1985a) and (1986) have examined the case where each
district is constrained to contain only one destination and all shipments are
direct (ns = 1). They illustrated situations where coordination of production
and distribution is most conducive to cost savings, and provided a bound on
the maximum possible benefit.

o Further research may be worthwhile to relax the ns = 1 assumption and to
allow more destinations than item types.
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@ Throughout this talk it was assumed that the total production rate* could be
adapted to the changing demand without penalty. In practice, though, this is
rarely so, even if the items produced are generic. (It is more costly to change
the quantity of items produced than the kind of items produced because to
adjust the production rate one needs to hire extra labor, pay overtime or fire
labor as needed — and the penalty for these actions is large; Newell, 1990, has
examined the production rate adjustment process.) To conclude this lecture,
we show that this seemingly strong assumption can often be relaxed.

*not just the schedule by item type
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Figure: Production for a gradually decreasing demand
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@ The figure shows how a production curve may be adapted to a gradually de-
creasing demand; the objective is tracking the smooth envelope to the crests
of the shipment curve (which varies like the demand curve) as closely as pos-
sible, without many production rate changes. We had already known that for
a similar model described previously, lot size decisions were independent of
production decisions; fortunately, this is also true now.

@ In this figure, the inventory at the origin decomposes in two components: (i)
a (shaded) component, which is due to the discreteness in the production rate
changes and is independent of the shipping schedule, and (ii) a dotted compo-
nent which is the same as if the production schedule was adjusted continuously
as assumed in this chapter. Thus, costs can be divided into two components
affected respectively only by production, or only by logistics decision variables.
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Any questions?
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Readings

o Daganzo. Logistics System Analysis. Ch.4. Page 133-153.
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