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Quick flashbacks

@ The total distance for systems with many vehicle tours

total distance =~ f

R[%r(x) + kY2 (x)]0(x)dx.

@ The total distance for systems with few vehicle tours
total distance ~ K N6 Y2 = K+/N|R|.
Hr R FZRX, |R| AHEHEM; N AEIEE, C AR XNEIIEEL, r(x)

NMBEEIEFLFI R (BRFERS) BRI, kK NS 6(x) RN
BRREL 6(x) ARALHEIFIARIIE S 6-Y2(x) AL mR A QR A FE B ;
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@ Identical Customers and Fixed Vehicle Loads
@ Very cheap items: ¢; <€ ¢,
@ More expensive items: ¢; » ¢,
@ Inventory at the origin
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@ We first consider strategies where the loads carried by each vehicle are given.
Since one would then operate the smallest possible vehicles able to carry the
loads, we will denote by viax the load size used.

o Given D,(t) = D(t) for tin [0, tmax]. We seek the dispatching times {t;: / =
0,...,L} and vehicle routes which minimize the total logistics cost. We let
to =0and t; < t)11.

@ Because all the customers are alike, there is no compelling reason to treat
some differently from others, and we shall assume that every customer is visited
with every dispatch |. Under these conditions, the search for the t; is facilitated
considerably because, the transportation cost only depends on the number
of dispatches, L.
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Decomposition

@ We now show that for a given number of dispatches L, the total transportation
cost between t = 0 and t = tnax is independent of the headways: H, =
t;— t/_l(lz 1,...,L).

o We have already stated that the transportation cost for a given /is a linear
function of # routes, # delivery stops, # items carried and the total distance.

o Clearly, the combined cost for all / must also be a function of these four
descriptors. Because vehicles travel full, three of these (the total number of
items D(tmax )N, the number of vehicle tours D(tmax) N/Vimax, and the total
number of delivery stops NL) are fixed; they do not depend on when or how
much is shipped at each t,.

» Recall that the cost for n shipments ~ cs(1+ ns)n+ csnd + c’sV, cs the stop cost; ¢4 vehicle
cost for each mile traveled; ¢, added cost of carrying an extra item
PRRERY: B $Ho 6 /85



Total combined transportation cost

o For a given L, the total combined distance for all dispatches is also independent
of the ;.

@ As indicated by the VRP formula, it is the sum of a local distance term pro-
portional to the total number of stops made NL, kLNE(6'/?), and a line-
haul component which is proportional to the (fixed) number of vehicle tours:
2E(r) x #tours = 2E(r) D(tmax)N/Vmax. Note that the line-haul component is
independent of L

@ With the cost coefficients, the total transportation cost combined between
t =0 and t = tyax is approximately:

D(tmax) N

Vmax

D max —
cSN{(t) + L} + cqkLNE(57Y?) + c42E(r) + LD (tmax) N,

Vm ax

which only depends on one decision variable, L
o The last three terms are obvious. Recall C = [¥==] is the number of stops that
a vehicle visits and D(tmax) = vL. We have the ‘stop’ cost to be c,L[¥](1 +

0 ~ CSN{D“W) + L}
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@ An expression based on few tour formula instead of the many tour one would
be quite similar, and also independent of the {t}.
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Total combined transportation cost (cont.)

D(tmax) N

Vmax

+ D (tmax) N,

CSN{ D‘(/t’"“) + L} + cakLNE(6™Y2) + cs2E(r)
max

o BEHE L AR, BNEIANME /MR ENFRKERNR, REBHE
WEHTEER vinax, ERFTVIRIRBE RERFE, X FE local distance )
Z:[EJO

@ The formula holds regardless of how many items are included in each shipping
period F—even if customer lot sizes are greater than V..

@ It holds in particular if one decides to ship larger quantities than necessary
in anticipation of future increases in the demand curves. This has a profound
implication for inventory control. Given a number of shipments L to be received
by a customer, their sizes and timing can be chosen to minimize holding cost
without affecting the transportation cost.
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Very cheap items: ¢; < ¢,

JEEAT AR A/ N TR SR A B A S0 AT
@ We examine first a case where items are so cheap (c¢; is small) that most of
the holding cost arises because of the rent paid to hold the items, ¢, ~ ¢,

@ In future lectures, with more expensive items and different customer types,
the CA approach will be used to solve this problem. This is not possible now
because, since the rent cost is a function of the maximum inventory held, said
cost cannot be prorated to (small) time intervals based only on the inventories
held at those times.

@ Fortunately, for a given L the transportation cost is fixed, and the headways only
influence the rent cost. Clearly, the headway selection problem is analogous to
that examined in the 1-to-1 distribution problem. -> ZAEIEFLIRET, BHn
FRASAEEAE, I 5 A2 Z 50,

cr rent cost per item-year; ¢; wait cost per item-unit time
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Very cheap items: ¢; « ¢, (cont.)

@ We saw in the lot size problem with variable demand that holding cost is
minimized if all shipments are just large enough to run out before the
next delivery

o If rent costs were the dominant holding costs (so that the rent cost was pro-
portional to the maximum lot size), then one should choose the dispatching
times so as to minimize the maximum lot size —All the lot sizes should be
equal, and given by D(tmax)/L.

@ The same occurs here. The minimum holding cost (for L dispatching periods)
is thus:

D(tmax)

Combined holding cost = N[ T

] Crtmax
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Optimal # of dispatching times

@ The total combined logistic cost consists

D(tmax) (tmax)

D(tmax _ D
Dltmar) | L} + caKLNE(5™Y?) + c42E(r)
Vi

Vmax

+ D (tmax) N
1

N

‘max

Jertmax T+ CSN{

combined holding cost combined transportation cost

@ The optimal number of dispatching times L should be chosen by minimizing
such a sum. Only the first and second terms of the transportation cost capture
the local stop cost and the local distance cost and depend on L. The other
terms, corresponding to the line-haul travel and the loading/handling cost do
not.

@ Thus, the optimal L* is the solution of an integer constrained EOQ equation
that balances the local transportation cost and the rent cost; the solution is
close to:

rtmax D(tmax) |"/°
L* & [(M] , if L is greater than 1.
Cs + Cq -

FEBA 107 TARK (4.9) AR
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Optimal total combined cost/item

The total combined cost per item is approximated by:

Cs + 2¢cqE(r) s+ cdk_E(5—1/2) 2

+ .+ 2[c,

Vmax

where we use [ for the average demand rate per customer, D(tmax)/tmax. Remark-
ably, the optimal cost does not depend on the shape of D(t). Not many details are
needed to provide a reasonable estimate of operating cost.
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More expensive items: ¢; » ¢,

@ We now discuss the problems for items so expensive per unit volume that most
of the holding cost is inventory cost. Our lectures on lot size problem
showed how a CA approach could be used to locate points on the time line
(the delivery times) in order to minimize approximately the sum of the holding
and motion costs

@ The latter was modeled by a constant cr that represented the added cost of

each dispatch. Reasonable for the one-to-one problem examined at the time,
this simple formulation also applies now

@ From the equation of the combined transportation cost, we notice that with
each additional dispatch, the transportation cost still increases by a constant

amount (Xf L 3kK'F)
cr~ [cs + cakE(6™Y2)IN.

This constant represents the local transportation cost induced by the N ad-
ditional customer visits resulting from the extra dispatch. The line-haul cost
remains unchanged.
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More expensive items: ¢; » ¢, (cont.)

o Consequently, the results and methods of the lot size problem for the EOQ
with variable demand also apply here if one defines cf ~ [cs + cgkE(6~Y/?)|N
and replaces D(t) by ND(t). The CA formulation for 1-to-1 problems can then
be used to estimate cost. Don't forget to add the (large) fixed components of
combined transportation cost that do not depend on L

@ Once the dispatch times {t/} and the corresponding delivery lot sizes {v;} have
been determined, the vehicle routes can be designed as described in the non-
detailed VRP, recognizing that the number of stops per vehicle (C = nl ~
Vmax/Vi) changes with /.
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More expensive items: ¢; » ¢, (cont.)

@ For the special case with uniform density and constant demand, the cost for-
mula reduces to a form analogous to formula for cheap goods, with ¢;, D' and
(|R|/N)*/? substituted for c,, D’ and E(6-1/?)*.

@ This approach has been used to streamline General Motors' finished product
distribution procedures. The results have been compared with those of (less
efficient) direct shipping strategies!.

*Burns et al. 1985
fGallego and Simchi-Levy, 1988
PRRERY: B $Ho 16 / 85



Inventory at the origin

@ The theory we have described focused on the holding cost at the destination
and used cost expressions as if there were an equivalent cost at the origin.

@ This assumption is reasonable for the 1-to-1 problems and is now shown also
to be reasonable if the one-to-many system is operated as we described.

@ However, a modification to the operating procedure can drastically reduce the
origin holding costs.
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@ With our dispatching strategy, where all the destinations are served with each /,
the number of items accumulated at the origin reaches a maximum immediately
before a dispatch, and at the destinations immediately after a reception.

o If production is flexible, one will produce by dispatch / only those items that
must be sent by time t; (and no more) ; thus, the maximum accumulation at

the origin is the size of the largest shipment received by any customer, times
N.

@ Because shipments arrive as supplies run out, this is also the maximum ac-
cumulation for all the customers. It is thus reasonable to represent rent cost
by the product of a constant, ¢,, and the maximum accumulation, as we have
done.
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@ Inventory costs are slightly different. If one could produce the items as fast
as desired, one would produce item during a short time interval prior to t; for
each combined shipment /; and would therefore avoid inventory costs at the
origin. This is not likely to happen, however.

@ Although the production rate can change with time to satisfy a slow varying
demand D(t), items are normally produced at a roughly uniform rate during
each inter-dispatch interval, since most production processes benefit from a
smooth production curve.

@ Thus, inventory costs should not be reduced in this manner. If some destina-
tions request more expensive items than others, then inventory cost may be
reduced without altering the production rate, simply by changing the order of
production. One might want to produce the cheap items at the beginning of
the inter-dispatch interval and the most expensive at the end.
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@ In most cases, however, only a fraction of the inventory cost at the origin could
be saved by exploiting these differences.

@ Thus, the waiting cost at the origin should be comparable to the waiting cost
at the destinations, and a strategy which assumes that both holding costs are
equal should yield costs close to one which recognizes the inventory cost at
the origin more accurately

e Remember that an error in a cost parameter by a factor of 2 only increases the
resulting EOQ cost by about 10%.
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Staggering production for delivery regions (584 = 5RMK)

@ With our operating strategy, all the points in the region R are visited at each
instant /.

@ However, if instead of waiting for time t;, vehicles are dispatched just as soon
as their last item is produced, both the storage room and the inventory cost
at the origin may be reduced. As shown below, this reduction is largest if one
can produce all the items for each one of the delivery districts, in sequence.
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o If the delivery times to any customer are shifted by a time At; smaller than
one headway (i.e., the new delivery times are t; = t; — At; > t;_1), and if At
changes slowly with / so that the new headways are close to the old, then the
total holding cost does not change appreciably.

o With a slow varying D(t), the maximum accumulation remains virtually un-
changed, and so does the total number of items-hours; see the difference
between the solid and dotted R(t) curves.

@ This is consistent with the CA solution; the cost is sensitive to the delivery
headways used as a function of time but much less so to the specific dispatching
times.
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@ Suppose that we label the tours used for the Fth shipment: j= 1,2, 3, etc.

@ Assume that items for destinations in tour j = 1 are produced first, items for
destinations in j = 2 second, etc; and assume as well that every tour is started
as soon as the orders for its customers have been completed.

o If the delivery districts do not change with every /, it would be possible to
label them consistently so that all destinations would have the same label in
successive dispatches. This would ensure that the /th delivery headway to
every customer is close to (t;;1 — t;), and that as a result the holding cost at
all the destinations would remain essentially unchanged.

@ The ordered production schedule, though, would cut the maximum and average
inventory at the origin by a factor equal to the number of tours used for the
th shipment, drastically reducing holding costs at the origin.
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Unless the demand is constant, D(t) = At+ constant, it is not reasonable to assume
that all the delivery districts remain the same; in that case a less ambitious version
of our staggered production schedule can be employed.

@ The service region can be partitioned into production subregions Py, P,, ..., Pp,
where P is a number small compared with the number of tours in any /, but
significantly larger than 1 (so that it can make a difference.)

@ Each production subregion should contain the same number of customers (i.e.,
the same total demand) and require at least several tours to be covered. Under
such conditions, the distance for covering R with a VRP is not much different
from the collective distance of separate VRP's to cover Py, P, etc.

@ This is true because, like the TSP, the VRP exhibits a partitioning property.
(This should be obvious, since: (i) the cost in each subregion is the sum of the
costs prorated to each of its points, and (ii) the cost per point is independent
of the partition).
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The following strategy cuts inventories at the origin by a factor P, while preserving
virtually unchanged the motion and holding costs at the destination:

@ produce the items for any shipment in order of production subregion: P; first,
then P, etc

@ On completing production for a subregion, Pp, dispatch the vehicles to the
subregion on VRP routes constructed for the subregion alone
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@ As a practical matter, P does not need to be very large; once it reaches
a moderate value (say P a 5) additional increases yield decreasingly small
benefits.

@ In fact, even if the demand was perfectly constant, it is unlikely that one would
choose a P much larger than 5 because larger P's imply shorter production runs
within each P,, which hinders our ability to sequence the production to meet
other objectives, such as operating with smoothing worker loads and materials
requirements. P FYX/INRIE T L HMIAS R F XA = IR FE, a0
R T TAERBEMEIE R, PR, AR sme, kit
AT T A7
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o If production schedules are staggered as described, then the search for the
optimal dispatching times should recognize that holding costs will be lower.

@ The analysis could be repeated with a changed holding cost equation (e.g.,
combined holding cost = qutmax for the case ¢, » ¢;) but this is un-
necessary; a suitable (downward) adjustment to the holding cost coefficient,

either ¢; or ¢,, has the same effect and also preserves our results.

@ If holding costs at the origin can be neglected, the coefficient should be halved;
of course, there is no need to pinpoint its value very precisely, since the solution
to our problem is robust to errors in the cost coefficients.
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© Identical Customers and Vehicle Loads Not Given
@ Limits to Route Length
@ Accounting for Pipeline Inventory Cost

PRRERY: B $Ho 29 /85



LR R T i SR Y )

@ In every case discussed so far, the total cost expression decreases with the
vehicle load carried vmax < the larger vimax the smaller the total number of
vehicles that need to be dispatched. — In any practical, one would be well
advised to use vehicles as large as the (highway, railway ...) network would
allow.

@ However, the analysis ignored pipeline inventory cost and did not consider
possible route length restrictions. With either one of these complications, it
may not always be desirable (or possible) to dispatch full vehicles all the time;
vehicle load size becomes a decision variable.
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@ We will discuss route length restrictions first, and will then incorporate pipeline
inventory into the models.

@ It will be shown that pipeline inventory cost can be ignored for freight that
is neither perishable nor extremely valuable, and that it cannot be ignored for
passengers.

@ Were it not for this complication, the results for fixed vehicle load problems
could be used for 1-to-N passenger logistics (e.g., to design a commuter rail
network serving a CBD).

@ We concludes with a discussion of restrictions on the delivery lot size.
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Limits to Route Length

o If the optimization of the identical customer problem results in very small
delivery lot sizes, each vehicle may have to make an unreasonably large
number of stops.

@ Very long routes may not be feasible if there are restrictions to the duration of
a vehicle tour. For example, due to labor regulations

@ We may explore the consequences of such restrictions

PRRERY: B $Ho 32/85



Limits to route length (cont.)

@ Tour duration limitations essentially impose a location-dependent limit on
the number of stops.

@ Presumably, locations distant from the depot will need to be served with fewer
stops than those which are nearer since more time is needed to reach their
general vicinity.

o To recognize this dependence, we use Cpax(x) for the maximum number of
stops around x; we assume that Cpax(x) varies slowly with x
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Limits to route length (cont.)

@ Assume first that N is large, so that most delivery districts do not reach all
the way to the depot. Then, to minimize distance one should still attempt to
design delivery districts of width [6/5(x)]'/?, while making them long enough
to include a desired number of stops at (or near) coordinate x, ns(x) < Cpax(X).
This yields: length = ny(x)/[66(x)]"/2. The total distance is then given by
expressions

2r,

nSI

Total distance ~ Z + k672 (x)]

~ 2NE(n—) + kNE(67%/2)

where n, ; denotes the number of stops per tour used for tours near x;;

e if ns(x) = C, it coincides precisely with previous expressions. Although the
line-haul distance component (the first term) is somewhat different if ng(x)
varies with x, the local component remains unchanged.
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Total distance with restrictions on the route length (cont.)

Total distance = 2NE(—) + kNE(6~2/?)

nS
This expression decreases with ng;; — # stops per tour should be made as large as
practicable.

For our problem, # stops used near location x on the /th dispatch, nl(x), should
satisfy:

ng(x) = min{Cmax(x); Vmax/vl}a

where v, denotes the delivery lot size used for period /. The expression indicates that
the vehicle either reaches its route length constraint, or else is filled to capacity.

BRIRIND B & x RARWNEKRE, F&
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Dependence on the specific headways?

@ With this restriction some of the tours may carry less than a full load. As a
result, it may appear that neither the total number of vehicle tours nor the
line-haul transportation cost (KI&IaHIAVEEE /2 2NE(-L)) are fixed.

@ We shows that, while not fixed, the number of tours (and thus the sum of the
line-haul and stop costs) can sometimes be approximated by an expression

that only depends on the number of headways L; then, the scheduling and
routing decisions can still be decomposed.

PRRERY: B $Ho 36 /85



Approximation for the number of tours

@ Assume that R can be partitioned into just a few subregions, P,, with the
same limitation on the number of stops: ng(x) < Cnax(x) & C,. Characterize
each subregion by the number of destinations N, and their average distance
to the depot E(rp).

@ We will show that the number of tours in each subregion only depends on L.
As a result, an expression for the total number of tours is developed.

@ The number of tours in period / for subregion p is:

N N,
{# tours;/, p} = max{ pYI. P} 7

;
Vmax Cp

and for all periods:

L L
{# tours;p}:NpZmaX{ 7 ;é}?Npmax{E vi .L}
I=1 P

Vmax = Vmax Cp
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@ This inequality is a good approximation for the number of tours if rent costs
dominate, as then the delivery lot size should be independent of /.

@ The approximation will also be good, for the same reason, if the demand is
nearly stationary. Then, we can write:

{# tours;p} = N, max [D(tmax) L] _ Np{D(tmaX) 4 max [07 LELP]}

'
Vmax Cp Vimax P

Where Lp = CpD<tmax)/VmaX'

@ L, represents a critical number of dispatching periods for subregion p. If
L > L,, then the lot sizes are so small that the vehicle cannot be filled in
subregion p; the number of stops constraint is binding. L K, FTREMHIX
PN F (R B = A= ) 7R SR DN QAR ZE G R, 5 (R S S AR
%, WINTREESZ &R E R,

YL, FORTEHRIE p XITREARSS A RC I UK S
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Total transportation cost

o If the equation is a good approximation for # tours used in P,, then the sum
of the origin stop cost plus the line-haul cost for all tours is:

P

Z {# tours; p}[cs + 2¢c4E(rp)]

p=1

D(tmax) P L—L
= Vmai NJcs + 2¢4E(r) Z Cs + 2¢qE(rp)] [Np max (O, G p)]

which only depends on the dispatching times through L.

@ For small L the expression is constant, and matches the sum of the 1st and
3rd term of the total combined transportation cost. But once L exceeds some
of the L, (some tours hit the length constraint and are only partially filled), it
increases with L at an increasing rate.

TRecall the expression for combined transportation cost: csN{Dsti":’X) +L}+ cdkLNE((S—l/?) +

cg2E(r) 2N 4 ¢ Dty ) No AT BT BOBHBANIE — I (5 e NL $55) R =10
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Find the optimal dispatching time L

@ The optimal L can be found still as a trade-off between inventory cost* and
transportation cost!, with the first and third terms revised.

@ Because the revised combined transportation cost equation is piecewise linear
and convex, the sum of the inventory cost and transportation cost has only one
local/global minima. The revised derivative of total combined transportation
cost with respect to L is now a step function:

N
[cs + cdkE(5_1/2)] N+ Z ?P [2¢4E(rp) + ¢ ,
L,<L P

where the summation only includes p's for which L, < L. The second term
represents the cost increase for the extra tours that need to be sent
because (some) vehicles cannot be filled to capacity. The first term
keeps unchanged.

*Recall the expression for combined holding cost: N[W]crtma><

TRecall the expression for combined transportation cost: csN{DSL:X) +L}+ cdkLNE(6_1/2) +

cg2E(r) 2m2 N ¢ Dty )N
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Find the optimal dispatching time L (cont.)

[cs + cdkE(5*1/2)] N+ Z % [2¢cq4E(rp) + ¢,
L,<L P

@ In the special case where C,, is the same (Cnax) for all points, there is only one
subregion, with L; = CrpaxD(tmax)/Vmax and Ny = N. Therefore, the second
term is zero if L < GCuaxD(tmax)/Vmax, and equals (N/GCuax)(2¢cqE(r) + ¢5)
otherwise.

@ The optimal L can be found as follows: If there is a value of L for which the
sum of this equation and the derivative of combined holding cost equals zero,
then that value is optimal; otherwise, the optimal value is the L, for which the
sum changes sign.

@ Because the derivative is larger than before, the optimal L will tend to be
smaller and the resulting cost greater. This is intuitive; with limits to route
length it may be advisable to increase the lot sizes (by reducing L) to make
sure that most of the vehicles travel full.
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@ Our results assume that all customers share the same L and v;. Although this
simplification facilitates production scheduling, it may also increase logistics
costs when C, changes significantly across subregions.

o If a different L can be used for different subregions, then fewer dispatching
intervals and larger delivery lot sizes can be used for subregions with a low
Cp; all the vehicles can be filled as a result. A strategy (a set of dispatching
times and delivery districts) can then be tailored to each one of the subregions
independently of the others. XfF Gy RS, A& F XL
ARIBCIE RS C, B, BT IXIR p BEVIRIAY R AR RG], AT LA
Tt PEEAPRAC A AR AN K J vt B (15 IR 55 1% X ) 2R B AR TG

@ We will explore this point — the determination of routing/dispatching strate-
gies that vary in time and space —more thoroughly in the following talks.
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Route length restriction for few vehicle tours

@ To conclude our discussion on route length restrictions, we must consider the
case with few vehicle tours, N « C?

@ Very simple. The transportation cost is insensitive to # stops per vehicle for
this case.

@ Hence, route length restrictions do not influence either the optimal dispatching
strategy or the final cost.
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Accounting for Pipeline Inventory Cost

@ In all the optimization problems described so far we have found a solution
which minimizes the sum of the motion cost, the holding (rent) cost and the
stationary inventory cost. We did not consider the pipeline inventory cost of
the items in the vehicles.

@ Recall that the pipeline inventory cost/item was ¢;tp,, where t, is the average
time an item spends inside a vehicle.

@ On average an item spends in a vehicle a time approximately equal to one-half
of the duration of the tour. If the vehicle travels at a speed s, and takes t;
time units per stop, the duration of a tour with ns stops and d distance units
long is d/s+ (ns + 1)ts; thus:

~

tm ~

1 d 1

d/s + (ns+1)ts|, and ity ~ =¢i x — + =cits(ns + 1)
—_— 1 2 s 2

bzcia g |a) {EEEI[A]

N =
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Compositions of the pipeline inventory cost

@ Added for all items for all L shipping periods, the pipeline inventory cost be-
comes approximately a simple function of the total number of (item-miles),
(items) and (item-stops):

o Gt
= x # item-miles + f X # items + ¢jts X # item-stops
s

@ The total number of items is D(tmax)N. The total number of item-miles and
item-stops can be obtained easily if there are no route length restrictions.

@ In that case vehicles travel full (from the depot) and every stop delays on
average Vmax/2 items; therefore, the total number of item-stops is NLviax/2.
Similarly, each vehicle carries on average vinax/2 items and the item-miles equal
the product of the vehicle-miles and (Vmax/2).
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Compositions of the pipeline inventory cost (cont.)

o We have already seen that the total vehicle-miles are (recall the derivation for

the total combined distance):
2E(r)D(tmax) N
Vmax

+ kNLE(67Y/?)

@ Thus, the pipeline inventory cost can also be expressed as a function of the
decision variables through L alone:
JE(r) D(tmax) N KN it
[c (r)(a)]+[c E c25
s

[D(tmax)N + Nvmax L]

> (51/2)vmax] L+

XEMNPOHRERITRE, FHAN ‘item-mile’ BUEH,

THEEIREA 116 T ‘total combined distance’ ARH IR,
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REFLTUNA vs ISR

it
C; [D(tmax)N + Nvimax L]

CiE(r)D(tmax)N ;KN _1/2
E(0%) Vimax L
s +[ 2% (6 )V a ] +
@ As a function of L, this expression is similar to the equation for transportation
cost*, but it increases much more slowly: at a rate N[c,-vmax/2][ts+kE(5*1/2)/s]
as opposed to N[cs + CdkE(5’1/2)]

@ Normally, the quantity cjvinaxts represents the cost of delay to the items in a
full vehicle during a stop. It should be several orders of magnitude smaller
than ¢ (the truck cost and driver wages during the stop).

o Likewise, the quantity c;Vmax/s represents the inventory cost of a full truck per
unit distance. It should be much smaller than ¢, (the vehicle operating cost
per unit distance, including driver wages).

@ Thus, if pipeline inventory costs had been considered from the beginning, the
results would not have changed.

*Recall the expression for combined transportation cost: csN{M +L}+ cdkLNE((S—l/?) +

cg2E(r) 2m2 N ¢ Dty )N
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o If the items are so expensive that the pipeline inventory component cannot
be neglected, then the pipeline inventory cost, unlike the transportation
cost, increases with v, ..

@ One could thus imagine a situation where a v, smaller than the maximum
possible might be advantageous; the vehicle loads cannot be assumed to be
known. The transportation of people is a case in point, where the inventory
cost of the items carried (the passengers) vastly exceeds the operating cost.

@ That is why airport limousine services do not distribute people from an airport
to the hotels in the outlying suburbs in large buses; this would result in un-
acceptably large routes, with some passengers spending too much time in the
vehicle*. HUZHLAERSS A A R R e ALz h B AT A 457
FH? RS MEITRRKAA AR, SRS BN RIKZ,

*See Banks, et al. 1982, for a discussion
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Re-examine the total transportation cost

@ Let us now see how to select the routes and schedules for a system carrying
items so valuable that vehicle loads are not necessarily maximal.

@ Without an exogenous vehicle load, the total transportation cost no longer can
be expressed as a function of L alone; the total vehicle-miles and the number of
tours depend on the specific vehicle-loads used, and this has to be recognized
in the optimization.

@ To cope with this complication, we will consider a set of strategies more general
than the ones just examined, but will analyze them less accurately.
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Headway

@ We will now allow different parts of R to be served with different delivery
headways at the same time. To do this, we define the smooth and slow
varying function H(t, x), which represents the headways one would like to use
for destinations near x at times close to t.

@ Until now we had assumed that the headways were only a function of t:
H(t,x) = H(t). As a result, the optimal dispatching times {t;} could be found
with the exact numerical techniques; or if D(t) was slow varying, with the CA
approach.
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# stops per tour

@ For the present analysis we also seek a function ns(t, x) which indicates the
number of stops made by tours near x at a time close to t. Of course, this
number cannot be so great that the vehicle capacity is exceeded; the following

must be satisfied:
{ns(t, x) D' (t) }H(t, X) < Vinax,

@ The quantity in braces represents the combined demand rate at the ng destina-
tions visited by a tour, and the left side of the inequality the load size carried
by the vehicle.

@ The approach we had used assumed that this equation was a pure equality, so
that ng was only a function of t, ng(t) = vimax/[H(t)D'(t)], implicitly given by
H(t).

o Like H(t, x), the function ng(t, x) will be allowed to be continuous and slow-
varying during the optimization.
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Decision variables

@ Once H(t,x) and ns(t,x) have been identified, a set of delivery districts and
dispatching times consistent with these functions must be found. This will be
illustrated after the optimization has been described.

@ Let us write the total logistics cost per item that items at time-space point
(t, x) would have to pay if the parameters of the problem were the same at all
other times and locations, i.e., D'(t) = D/, 6(x) = 4, and r(x) = r.

@ The decision variables H and ng that minimize such an objective function will
become the sought solution, varying continuously with t and x (H(t, x) and
ns(t, x)).

PRRERY: B $Ho 52 /85



Total motion cost per item

@ The minimum value of the objective function for these coordinates z(t, x), is
the CA cost estimate.

o Noticing that a vehicle load consists of D'ngH items and a delivery lot of D'H
items, we can express the total motion cost per item as:

1
+ c..

2rcy _1p 1 1
_ V2= 4 4
DnH oH T “DH T “DnH

Zm

@ Recall the expression for combined transportation (motion) cost: CSN[M +

‘max

L] + cakLNE(6™Y2) + cq2E(r) 2N o o Dt )N. We may obtain z, by

simply putting Viax = D'ngH, DH= D(tmax)/L in the expression and dividing
it by D(tmax)N.
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Physical interpretation

2rey L, 1 1 1
- SR SN S
= D H DH DR T “DnH TS

This expression has an intuitive physical interpretation.

e Each tour incurs a cost (2rcy + ¢;) for overcoming the line-haul distance and
stopping at the origin, which prorated to all the items in the vehicle yields the
first and fourth terms.

o The tour also incurs a cost (cgkd /2 + ;) for each local stop and detour,
which prorated to the items in a delivery lot, yields the second and third terms
of the expression.

@ The last term is the (constant) cost of handling each item.
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Physical interpretation (cont.)

2rcy 1 1 1
Zm = + cgkd Y2 + Gt G
™ DnH DH ' “DH " “DnH
Thus, the first two terms are the cost of overcoming line-haul and local distance
(assuming that many tours are needed); the third term is the cost of stopping at
the destinations; the fourth the cost of stopping at the origin, and the last one the
handling/loading cost.

/

+d.
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Holding costs

@ The holding costs can be expressed in a similar manner. For the pipeline
inventory cost per item, we have the following expression when C = ny:

r _1/2Ns ts 1
2z, = G- + k6 V22 4 0, + Zcts.
P IS i 2s 12 s 2 its
@ As with the expression for the total motion cost, the four terms correspond to
times spent in line-haul travel, local travel, destination stops, and at the
origin. The stationary inventory cost per item averages z; = ¢;H if we count
it both at the origin and the destination.
@ The rent cost can be ignored because if items are expensive compared to
transportation costs, they will certainly satisfy ¢; » ¢,; thus ¢, = (¢;+¢,) ~ ¢;,
and we can write z; = ¢y H. .

*Inclusion of rent costs would pose a problem because rent does not depend only on local
characteristics such as H and ns. An exception arises if the demand is stationary in time, D/ (t) =
D', because then the optimal solution is also stationary; i.e., H(t, x) is independent of t, and the
rent cost is ¢,H
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Total logistics cost

If instead of H (and as is often done in the literature) we use the delivery lot size
v = D’'H as a decision variable, keeping ns as the other variable, then the sum of
costs can be expressed as:

1 1
Z= Qg+ 01— + Qp— + 3N + QyV.
nsv v

where the «p, ..., a4 are the following interpretable cost constants, which will be
used from now on:

ap = (. + cir/s + ¢its/2); handling and fixed pipeline
inventory cost per item,

a1 = (2rcqg + ¢5); transportation cost per dispatch,
ar = (cqkd~Y? + ¢;); transportation cost added by a customer detour,
a3 = 1/2¢i(kd~?/s+ t,); pipeline inventory cost per item caused
by a customer detour and the ensuing stop,
aq = cp/D'; stationary holding cost of holding one item during the

time (1/D') between demands.
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Total logistics cost (cont.)

1 1
Z=0g+o1— + Qp— + 3Ns + Qg V.
nsv v

e zis a “logistics cost function” (LCF) that relates the cost per item distributed
to the decision variables of our problem.

@ With the new notation, we have: ngv < vphax. In addition, we require ns > 1.
Clearly, the LCF is constrained by these inequalities.

@ We will see that the determination of a realistic LCF is perhaps the most
important step in the design of a logistics system with the CA approach. In
the present case, the minimum of the total cost subject to these inequalities is
the solution to our problem.
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Total logistic cost (cont.)

o Note that « can (and often will) be omitted for optimization purposes. Note
as well that, with a small modification to the expressions for ay, ap, and ags,
This expression also applies to the VRP case with few tours*; k should be
replaced by k' and the term 2rcy should be omitted.

@ We will assume for the remainder of this section that the ay,as, and a3 for
large N are used in the optimization; if the resulting ns found in an application
is inconsistent with these values, then the a's should be changed to recognize
that N is “small”. Our qualitative discussion also applies to this case, which is
very similar.

*Recall N is small compared with n?
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The full vehicle condition

e We now identify a condition under which the pipeline inventory term (aszns)
can be neglected, and show that in that case ngv = viax.

@ For any integer n,, a feasible solution to the LCF is v = vinax/ns, which (ignoring
ag) yields:
(651 Qo n Vi
z(ns) = + S+ a3ns 4+ ag —=

Vmax Vmax nS

@ An upper bound, z%, to the minimum of the LCF, z*, is obtained from z(ny),
using ns ~ max{1, Vinax(aa/a2)*?} that is:

Z' <z = :
O 492 4 e g Vinaxs otherwise

Vmax Vmax

v _ {Vi: + 2(a204) 2 + a3Vimax (g /a2) Y2, i Vinax(aa/a)¥? = 1

TERWA 121 TIER
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Lower bound

@ A lower bound to the optimal cost is obtained by neglecting the pipeline inven-
tory term azns of the LCF, and optimizing the problem. We see at a glance
that LCF decreases with ns for any v; thus, one will always choose the largest

ns satisfying constraints: ng < Vimax/v. (Note that if v < viax, then ng =1
holds.)

o If this value is substituted for ng in the LCF, without its first and fourth terms,

we obtain a function
(e75] (6%
z(v) = + —= 4+ v
Vmax v

whose minimum (subject to v < vinax) is a lower bound, 7. Its expression is:

o 1/2 - 1/2
7> v 2(a20y) 72, if Vinax (ca/2) 2 >1
= ~ .
2L B2 g Vay,  Otherwise
max max

TERIEA 121 AR 4.21 #51%

PRRERY: B $Ho 61 /85



Gap between 2 and Z

o Notice that the expressions for z“ and Z are almost identical: z¥ — Z =

a3vmax(a4/a2)1/2 if vmax(a4/a2)1/2 > 1, and z¥ — Z = a3, otherwise.

@ The relative difference between any two of z, z* and Z' should be lower than
€ = 3= the ratio of the maximum value of (2 — Z) to 2(a04)'/?, which
is the second term of z/ when viay(ca/a2)'/? = 1. It bounds Z' from below.

@ The numerator of this constant, a3vmay, is the pipeline inventory cost accruing
to a full vehicle for one delivery detour; the denominator is double the vehicle
motion cost per detour. For most commodities this ratio is orders of magnitude
smaller than 1, so that the lower and upper bounds will nearly coincide.

@ In summary, if € « 1, then filling the vehicles (as done with the strategy leading
to zV) is near optimal; the resulting cost is close to the lower bound, obtained
without pipeline inventory costs.
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Problems with large gaps

@ The incentive to fill vehicles, used so far, does not apply if € = a3Vimax/(2a2)
is large compared with 1. The LCF minimization problem then yields a strict
inequality for nsv < vinax. We now examine the solution to this minimization
problem with varying conditions in time-space.

@ The unconstrained minimum of LCF can be obtained numerically, and it can
also be expressed analytically as a function of one single parameter 5. To see
this, let ng be close to the unconstrained minimum of LCF: ng ~ (a3 /a3v)Y/?;
then z*(v) = 2(aya3/v)Y/? +aa/v+agv. This expression reflects an achievable
cost if ng > 1.
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Problems with large gaps (cont.)

@ Because z*(v) is convex, its minimum is the root of dz*(v)/dv = 0. Using
V = (aza3v)/?/ay, we can express this equation in terms of V' as follows:

Bx (V) =14+V;ie, =)+ (V)3

where 8 = asa3/(a1a3)?
@ When V is small compared with 1 the second term in the last expression can
be neglected; in this case the solution is: vV ~ 8~Y* « 1 for 8 » 1.

o Conversely, if V' is large compared with 1, i.e., 8 « 1, the first term can be
neglected and the solution becomes v ~ f~1/3.
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Problems with large gaps (cont.)

@ The largest of the two extreme solutions can be used as a rough approximation
when 5 ~ 1.

@ The optimal vehicle load is nsv = Vas/as, and ns = ay/apV. If the vehicle
load is smaller than vinax and ns > 1, then the solution can be accepted. (This
happens if a;V < a1 and a3Vimax). The optimal H and z can also be expressed
as a function of v/, and thus of 3.
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Ignoring the pipeline inventory cost

o Without pipeline inventory, the solution z* is as the derivation for the lower

- 1/2 ' 1/2
+ 2(a2044) , if Vm3x(0é4/0(2) >1
bounder. z* ~ Z ~ Vgix . .
o T + Q4Vmax, Otherwise

Vmax Vmax

increases

linearly with a;*

@ Because there is an intercept, both z* and the total cost/ unit time ND'z*
increase “less-than-proportionately” with r; the ratio of cost to distance de-
creases.

@ We also see that z* decreases with the demand rate/customer D'T, but in-
creases with the spatial density of customers % if their aggregate demand rate
ND' (i.e., 6D') is constant. However, the total cost/unit time ND'z* is non-
decreasing with D',

@ While not so obvious, these scale economies are also shared by the solution
to LCF minimization problem as just described. While ND'z* increases with
D', z* decreases; the optimal cost also increases less than proportionately with
distance from the depot.

*which also increases linearly with the distance from the depot r since a; = 2rcy + ¢s
TOc4 = Ch/D/
iocz = Cdk571/2 + Cs
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Extensions

@ To estimate cost for a problem with varying D/(t),d(x) and r(x), one would
need to average the analytical solution over t and x. Although it may be
possible to do this in closed form using statistical approximation formulas for
expectations (these indicate that cost increases with variable conditions), a few
numerical calculations should suffice.

@ One could calculate z* for all the D(tmax)N items demanded, using their re-
spective t and x, but this would be too laborious. Instead, one can partition
the time axis into m = 1,..., Mintervals and Rinto p =1, ... P subregions so
that each (m, p) combination includes roughly the same amount of demand.
We use any interior point (t, x) of each combination to calculate both the pa-
rameters of the optimization and the resulting cost, z™. The estimated cost
is then the arithmetic average of the z™P.
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@ Implementation Considerations
@ Clarens and Hurdle's Case Study
@ Fine-Tuning Possibilities
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@ We now describe how specific solutions can be designed from the optimization
results in prior sections. It also discusses systematic ways for fine-tuning the
designs.

@ We already know that changes in the input parameters of an EOQ optimization
have a dampened effect on the decision variables; this is also true for the
objective function now at hand.

@ Thus, if D(t) and &(x) change slowly, the decision variables H (or v) and ns
will change even more sluggishly over t and R. Because, as with the EOQ
optimization, the decision variables themselves do not need to be set very
precisely, it should be possible to identify large regions of the time-space domain
where the decision variables can be set constant without a serious penalty.
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@ For our problem with identical customers, the partition is easily developed: (i)
divide the time axis into m = 1,2,..., M periods with nearly constant demand
rates; and (ii) partition R into p=1,2,... P subregions with similar customer
density and distance to the depot.

@ The subregions and time periods should be large enough to include respectively
several delivery districts and several headways. This ensures that the number
of stops in each district can be close to ideal, and that the theoretical headway
H(t, x) can be approximated with an integer number of dispatches.

@ We anticipate now that, by designing a different spatial partition for every time
period, this method can be extended to situations with different customers and
time varying customer densities.
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@ An application of the technique for a very similar problem has been reported
by Clarens and Hurdle (1975).

@ These authors explored the best way of laying out transit routes from a CBD
to its outlying suburbs. They assumed that the demand was stationary and
changed with position.
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@ They describe the solution in terms of slightly different variables and inputs,
but the differences are only superficial. They define the vehicle operating cost
as a function of time (and not distance), c;, and do not explicitly account
for the number of stops; instead they assume that one knows from empirical
observations the time that it takes for a bus to cover one unit area — a
constant, 7(x), that can vary with position.

@ They define the demand as a density per unit area and unit time, A(x), which
changes with position. Instead of a distance from the CBD, r(x), they define
an express (line-haul) travel time, T(x), and as a decision variable they use the
area of a bus service zone, A(x), instead of ng(x). Thus, they work with the
following logistic cost function, which is equivalent to LCF:

2CtT TC
A)\H \H

L {T+TA/2} + cpH/2

where the bus load, AAH is restricted to be below v;,ax = 45 passengers. Note
that the constraints are also similar.
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Demand distribution for a transit line design problem
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Worksheet for a transit design problem

Assumed Density
o
Riders per Hour per Square Mile
\ \ 7 = el _
\ A7 {558 400 10500
300 to 400
|

i) 20010 300

t| 100 to 200

] 5010 100

e
SE ~lg‘!‘,}§ N
PR “:’""gl’
el = @ WS
fo _Eif;-‘»’\“:"' 2 l
v M x&gﬁéﬁg& Legend

Major streets

Son Francisco Boy _D

Freeway

N A\ Bus routes in locol
A service zones
Kilomaeters
2 3

\ end of express runs
bus line identification

Qo

o 26P1

PRRERY: B

74 /85



Comparison of the actual and ideal zone size

Results of the transit line design process
(Source: Clarens and Hurdle, 1975)

Area Average rexy)

Zone (square miles) Headway Load Load Txy) (1111:1; Isq
~—_ (minutes) OnBus Factor (minutes) .
Actual  A*xy) (persons) mi)
A 2.0 1.9 13 35 78 27 9
B 1.9 19 14 31 69 27 10
C 1.7 1.3 10 43 96 25 10
D 1.0 1.1 9 39 87 26 11
E 1.0 1.2 11 40 39 24 9
F 13 1.4 14 36 80 26 10
G 21 1.9 8 27 60 21 9
H 1.2 1.5 73 38 84 22 8
1° 1.2 1.2 7 45 Full 26 8
T 1.1 1.2 7 36 80 20 8
K 1.1 1.1 9.0 38 84 19 10
L 1.0 1.0 6.7 45 Full 24 13
M* 1.1 0.9 6.7 45 Full 26 13
N*® 13 0.8 5.8 a5 Full 29 16
o*° 0.9 1.0 8 43 96 25 11
P 1.0 1.0 9 30 67 17 11
Q 1.0 1.3 10 23 51 15 8
R 1.1 13 8 35 38 20 8
S 0.9 1.0 7 40 89 21 10
T 1.2 1.5 7 39 37 22 7

* Zones where 4*(x,y) = A.(X,3).
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@ Given the close agreement between these two columns of figures and the robust-
ness of the CA solution to small departures from the recommended settings,
one would expect to have a cost that is very close to the minimum.

@ The Clarens-Hurdle case study was an published example where the CA guide-
lines have been translated into a proposed design for a two-dimensional prob-
lem.

@ On reviewing the procedure, it becomes clear that a great deal of human in-
tuition is required to complete a design. Furthermore, careful efforts notwith-
standing, the designer may miss opportunities for small improvements at the
margin that depend on specific details (e.g., stop locations, street intersections,
etc.) of the particular problem. It might be worthwhile to use fine-tuning soft-
ware to find these possible improvements if any exist.
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@ The rest of this section describes the results of some experiments where fine-
tuning software was used to improve detailed VRP solutions developed quickly
from the guidelines of TSP/VRP.

@ These authors tested simulated annealing (SA) as a technique that is well suited
for fine-tuning purposes. The brief discussion of simulated annealing provided
in this reference is included as Appendix B. The technique is attractive because:

o A prototype computer program can be developed quickly for most problems
since the SA logic is very simple. (These authors developed software for the
VRP, from scratch, in about three mandays.)

e The optimization can be controlled by means of input variables (called initial
“temperature” and ‘“cooling rate” or “annealing schedule”) which determine
how much the algorithm is allowed to increase (worsen) the objective function
at different stages of the process in the hope of finding larger reductions later.
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@ Simulated annealing is known to converge in probability to the global optimum
of combinatorial optimization problems, such as those arising when designing
in detail logistics systems.

@ Unfortunately, convergence is slow. To be guaranteed, the initial temperature
has to be very large and the cooling rate very slow; the computer time required
rapidly becomes prohibitively long with increasing problem size. However, with
an overall idea of the system'’s structure, and a near optimal initial solution
as would be obtained with nondetailed methods, the scope of the annealing
search can be restricted. As demonstrated in Robusté et al. (1990), a low
initial temperature achieves that.

@ It prevents the search from wandering away from the initial solution, while
systematically testing variations that exploit the details (specific locations of
customers, for example.)
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@ One of the examples in this reference considers a VRP problem with N = 500
points (randomly located according to a uniform density in a 6-inch by 10-inch
rectangle), C = 45 stops per tour and a centrally located depot; distances are
Euclidean.

@ For this test the VRP formula with k =~ 0.57, predicts a total distance averaging
179 inches. With a high initial temperature, the SA approach yielded tours that
were very long in reasonable times; after one day of computation it obtained a
set of tours 180.4 inches long. This was reasonable, but longer than the hand
constructed tours using the VRP guidelines presented earlier.

@ When the hand constructed tours were used to initiate SA with a low initial
temperature, the SA algorithm found enough modifications to reduce the total
length by about four percent — to 173.6 inches.
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SA solution
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Figure: 500 point VRP. C= 45. 12 tours with total length = 180.4inches.
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Manual solution
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Figure: 500 Point VRP. C=45. 12 tours with total length = 179.8 inches.
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Other tests performed in this reference show that the non-detailed approach, fine-
tuned with SA, can obtain solutions with objective functions as low as those cur-
rently believed to be optimal. The efficiency of the twostep approach has also been
demonstrated in practice — the (non-detailed) results in Burns and Daganzo (1987)
were used in conjunction with SA to schedule the assembly lines in some GM plants
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@ These observations are in agreement with our philosophical conclusions. Like
the evolution processes in nature, to design a complex logistic system it seems
best to develop a preliminary design based on the overall characteristics of the
problem, and use the details later to fine-tune the preliminary design. This
view has been adopted in the recent works of Langevin and StMleux (1992)
and Hall et. al. (1994).

@ Although the CA approach and the SA algorithm seem to be ideal companions
for this twostep approach, other methods may also be useful. The critical
thing is not the specific approach for each step, but the fact that the first
step disregards details in searching over all possible solutions, and the second
step—restricted to a small subset of possible solutions—incorporates all the
details.

@ Perhaps other computer fine-tuning methods will improve on SA (Neural Net-
works and Tabu Searches...etc.). But the improvement should not be measured
only on computation grounds; the ability to develop the software quickly is just
as important.
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Any questions?
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Readings

@ Daganzo. Logistics System Analysis. Ch.4. Page 105-132.
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