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Revisit of ideas of CA

@ Accurate cost estimates can be obtained without precise, detailed input data,

@ Departures from an optimal decision by a moderate%age do not increase cost
significantly. Since there is no need to seek the most accurate estimate of the
optimum, there may be little use for highly detailed data,

@ Detailed data may get in the way of the optimization, actually hindering the
search for an optimum,

@ Thus, we advocate a two-step solution approach to logistics problems: the
first (analytical) step involves little detail and yields broad solution concepts;
the second (or fine tuning) step leads to specific solutions, consistent with the
ideals revealed by the first — it uses all the relevant detailed information.
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© One-to-one systems with constant production and consumption rates -> the
robustness and accuracy of the results (Daganzo's work)

©

One-to-one systems with variable demand over time -> numerical methods
and a continuous approximation (CA) analytical approach that is based on
summarized data(Newell's work)

Extension of the CA approach to a location problem that has an analogous
structure

The accuracy of the CA solutions

Extension of the CA approach to multidimensional problems with constraints

©00 O©°

Network design issues.
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@ The Lot Size Problem with Constant Demand

© The Lot Size Problem with Variable Demand
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Let us now explore the optimization problem for the optimum shipment size, v*:

B
z={Av+ S ivs Vimax } (1)

A=cp/D KRB RPIREF A, B=cr ATHMTWE ZZHT Ao
@ Consider first the case Vimax = @ . Then v* is the value of v which minimizes
the convex expression Av+ B/v. v¥ = ,/B/A

@ The optimum cost per item is: z* = (cost/item)* = 2+/AB, which is easy to
remember as “twice the square root of the product” of the terms in 1
@ As a function of ¢ ¢, and [, the optimum cost per item increases at a

decreasing rate with ¢ and ¢, and decreases with the item flow D'. There are
economies of scale, since higher item flows lead to lesser average cost.

*D k45 at e EFE, BHREHOGRER DA Av = ChHlD//D/ + Citm = chHy + citm,

Ch = Cr+ ¢ AMT RAFEEFHRAL . BoBFHR citm, JIN H = H=v/D 43518 X,
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We now examine the sensitivity of the resulting cost to errors in
@ the decision variable, v
e the inputs (A or B)

@ the functional form of the equation
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Robustness in the Decision Variable

@ Suppose that instead of V¥ , the chosen shipment size is WY = v, where 7 is
a number close to 1, capturing the relative error in W. Then, the ratio of the
actual to optimum cost 2°/z* will be a number, o/, greater than 1, satisfying:

B
v+/B/A

@ Independent of A and B, this relationship between input and output relative
errors holds for all EOQ models.

¥ = VA/BJA + ——)/[2VAB| = [ + 1] @)
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Robustness in the Decision Variable (cont.)

@ If v is between 0.5 and 2, so that the optimal shipment size is approximated
to within a factor of 2, then 7/ < 1.25. If v is between 0.8 and 1.25, then
~v" < 1.025 — A cost within 2.5% of the optimum can be reached if the
decision variable is within 25% of optimal.

o If 7 is several times larger (or smaller) than 1, then the cost penalty is severe,
ie, v~y (ory ~1/7)

@ Obviously, while it is important to get reasonably close to the optimal value
of the decision variable (say to within 20-40%), from a practical standpoint it
may not be imperative to refine the decision beyond this level.
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Robustness in the data errors (cont.)

@ Let us now assume that one of the cost coefficients A (or B) is not known
precisely. If it is believed to be A’ = §A (or B = §B) , for some 6 ~ 1, then
the optimal decision with this erroneous cost structure is:

x| VBASTIE = v A= 6A
| vt if B'=08B

@ Because the actual to optimal shipment size ratio, V*/v*, is either 6—'/2 or
8172 the cost penalty paid is as if ¥ = §/2. Thus, the resulting cost is even
less sensitive to the data than it is to the decision variables
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Robustness in the Data Errors (cont.)

o If the input is known to within a factor of 2 (0.5 < 6 < 2), then 0.7 < y < 1.4
and ' < 1.1. The cost penalty would be about 10%, whereas before it was
25%. The penalty declines quickly as d approaches 1

@ This robustness to data errors is fortunate because the cost coefficients (for
waiting cost especially)are rarely known accurately
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Robustness in the Model Errors

@ A cost penalty is also paid if the EOQ formula itself is inaccurate.

@ To illustrate the impact of such functional errors, we assume that the actual
cost, a complicated (perhaps unknown) expression, can be bounded by two
EOQ expressions; the cost penalty can then be related to the width of the
bounds.

@ Suppose, for example, that the actual holding cost zx(v) is not exactly equal
to the EOQ term (Av), but it satisfies:

Av—A/2 < z4(v) < Av+ A)2 3)
for some small A. Such a situation could happen, for example, if storage space

could only be obtained in discrete amounts. Because A is small, the EOQ lot
size v¥* is adopted.
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Robustness in the Model Errors (cont.)

@ The absolute difference between the actual cost [z,(v*) + B/v*] and the pre-
dicted EOQ cost z* cannot exceed A/2. It is also easy to see that the difference
between the optimal cost with perfect information, min{z,(v) + B/v}, and z*
cannot exceed A/2 either. As a result, the difference between the actual and
theoretical minimum costs — the cost penalty is bounded by A.

@ Usually, this penalty will be significantly smaller than the maximum possible

@ If A is small compared to z* (e.g., within 10%) the functional form error should
be inconsequential. The same conclusion is reached if the motion cost is also
inaccurate.

@ In general, the EOQ solution will be reasonable if it is accurate to within a
small fraction of its predicted optimal cost.
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Unusual conditions generating the largest penalty
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Error Combinations

SRR ENEESTROEIRE, FR—ERAREEM
o If errors of the three types exist, one would expect the cost penalty to be
greater. Fortunately though, when dealing with errors the whole (the combined
penalty) is not as great as the sum of its parts

@ Suppose for example that the lot size recipe is not followed very precisely
(because, e.g., lots are chosen to be multiples of a box, only certain dispatching
times are feasible, etc.) and that as a result 40% discrepancies are expected
between the calculated and actual lot sizes. We have already seen that such
discrepancies can be expected to increase cost by about 10%.

HHBRFE B %41 14 / 45



o Let us assume that one of the inputs (A or B) is suspected to be in error by a
factor of 2, which taken alone would also increase cost by about 10%. Would
it then be reasonable to expect a 20% cost increase? The answer is no; it
should be intuitive that the penalty paid by introducing an input error when
the lot size decision does not follow the recipe accurately should be smaller
than the penalty paid if the decision follows the recipe.

@ In our example, the combined likely increase is 14% [the square root of the
sum of the squared errors: 0.14 = (0.124-0.1%)/2]. Statistical analysis of error
propagation through models reveals similar composition laws in more general
contexts.
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Error Combinations (cont.)

@ The previous example illustrated how input and decision errors propagate. Al-
though model errors follow similar laws — the whole is still less than the sum
of the parts — for some approximate models the results are surprising. The
composed (data and model) error can be actually smaller than the data error
alone with the exact model!

@ This fortuitous phenomenon has a special significance because it arises when
certain discontinuous models with discrete inputs are approximated by contin-
uous functions and data*.

*Daganzo, C.F. (1987) "Increasing model precision can reduce accuracy” Trans.Sci. 21(2),
100-105.
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Problems with constraints

AE DM T ALY V< Vmax F1F0F EOQ BA M RAERE iR 2, R LILL
TR RGEER o e AR

@ The constrained EOQ solution is now presented rather briefly, before turning
our attention to the lot size problem with variable demand.

o If we find that v* > v« in solving the unconstrained EOQ problem, then the
solution is not feasible. Choosing v = vpax is optimal. Hence, the optimal
EOQ solution can be expressed as:

v¥ = min{+/B/A, Vmax}

and the optimal cost per item

«  )2VAB if A/B/A < Vimax
AVimax + B/Vmax  if A/B/A > Vimax
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Problems with constraints (cont.)

@ Note that z* is an increasing and concave function of A, and also of B.

@ As A= c,/D/, z* is decreasing a function of [ and convex; the economies of
scale continue to exist for all ranges of D'.

@ The total cost per unit time, [Yz*, is proportional to D''/2 until the capacity
constraint is reached, and from then on increases linearly with . The critical
point is D, = (Vmax)?ch/cf*

*BA B, MEAKH A R, HEIHGMEEA /B/A = viax > A= -0 RA

ax
A=cp/D, T D, = (Vmax)?cn/cr
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Optimal EOQ cost as a function various parameters

I

1

, :
B/v? A  Au?

D'z*

Figure: Optimal EOQ cost as a function various parameters: (a) holding cost per item, A;
(B & B) (b) fixed motion costs, B; (B & A) and (c) demand rate, D'. Dashed lines are
the unused branches of z*
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@ The Lot Size Problem with Constant Demand

© The Lot Size Problem with Variable Demand
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Problem with variable demand (% & K T &5 EOQ 5 £1)

BT R LA AT KA, % FATRR 6 5 XTI T8 EOQ
o] A2
@ The demand pattern is characterized by a function D(t) that gives the cumu-
lative number of items demanded between times 0 (the beginning of the study
period) and t. The time derivative of this function D' (t) represents the variable
demand rate.

o We then seek the set of times when shipments are to be received (ty =
0,t,...,t,—1), and the shipment sizes (v, v1,...,V,—1), that will minimize
the sum of the motion plus holding costs over our horizon, t € [0, tmax]-

@ As previously, we also define as inputs to our problem a fixed (motion) cost
per vehicle dispatch ¢ a holding cost per item-time ¢, = ¢, + ¢;, and
a maximum lot size v,,. With an infinite horizon and a constant demand,
D(t) = D't, this formulation reduces to the EOQ problem examined in previous
sections.
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Solution when holding cost ~ rent cost

o If inventory cost is negligible, ¢; < ¢, then holding cost approximately equals
rent cost ¢, ~ ¢,. We have already mentioned that rent cost increases with
the maximum inventory accumulation®, and that otherwise the cost is rather
insensitive to the accumulations at other times. This property of holding cost
simplifies the solution to our problem.

@ Recall that given a set of n shipments, the motion cost during the period of
analysis, ¢sn, is independent of the shipment times and sizes'. The problem
is then to find the sets of shipment times and sizes that will minimize holding
cost.

*cr x D'Hy 5AR A By & A 09 B 1) L%
BTSSP E &k
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Solution when holding cost ~ rent cost (cont.)

@ A lower bound to the maximum accumulation at the destination is the size of
the largest shipment received. (Why?*)

@ This lower bound minimized when all the shipments are equal.(Why?")
@ Hence, the largest shipment — and, thus, the maximum accumulation — must

exceed or at least equal D(tmax)/n, the set is an optimal way of sending n
shipments with rent cost per unit time: ¢,D(tmax)/n*.

@ Each shipment is just large enough to meet the demand until the next shipment;
the consumption between consecutive receiving times, the same in all cases, is
D(tmax)/n§.

ARG REEH—ATRARRIE, ShLZIR W 5] & R4 A5
THEARERE, ERERARTHAFHRET, AR ART R
IHEAMEANEL n KBENEFTE VA Dmax, WZAFAME = D(tmax)/n
S0k 69325 FRIFAL B LM R BLE 2 W 09 K&
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Solution when holding cost ~ rent cost (cont.)

Clearly the following strategy is optimal:

o Divide the ordinate axis between 0 and D(tyax) into n equal segments and find
the times t; for which D(t) equals (i/n)D(tmax) for i=10,...,n—1. These are

the shipment times,

@ Dispatch barely enough to cover the demand until the following shipment.

One must now find the optimal n by minimizing the resulting cost
cost/time = ¢,[D(tmax)/n] + cAn/tmax]

D(tmax)) + ¢ n/D(tmax)]

cost/item = ( g, )(

where D is the average consumption rate D = D(tmax)/tmax
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Solution when holding cost ~ rent cost (cont.)

@ Note that the formulation is the EOQ expression with v = D(tmax)/n. The
solution now requires that n be an integer (there are constraints on v), but we
have already seen that any v close to the unconstrained v* is near optimal. As
a result, unless the time horizon is so short that n* = 1 or 2, the optimal cost
per item should be close to the cost with constant demand

@ If vinax < 00, the solution procedure does not change. It is still optimal to have
equal shipment sizes, but the number of shipments should be large enough to
satisfy: D(tmax)/N < Vmax. The solution is still of the same form, with v—!
restricted to being an integer multiple of D(tnax)-1.
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Solution procedure
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Solution when rent cost is negligible

B —A LG AT R, RPALE T Bk, 12 R AR AHRE BN R T Bk,
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Solution when rent cost is negligible

The combined origin-destination holding cost will also be proportional to the shaded
area:

o if the origin holding cost can be ignored <— if the origin produces generic items
for so many destinations that the part of its costs that would be prorated (#:
b 5~ BL) to each destination is negligible.

o if the origin holding cost is proportional to
the area. <— if the production strategy at
the origin is as described in figure below. The
total wait at the origin that can be attributed
to the shipping strategy must be similar to
that of the destination; i.e., it would also be
proportional to the shaded area

Op

Orders produced

Smooth
approximation
of orders sent

Dp curve

Orders
sent curve

CUMULATIVE NUMBER OF ITEMS

TIME

o for typical passenger transportation systems
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Solution when rent cost is negligible
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T

@ When holding costs are proportional
to the shaded area, they are no
longer a function of n alone.

e For a set of points (ty...t,—1) to
be optimal, each line PQ must be
parallel to the tangent line to D(t)
at the receiving time? (point T in
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CUMULATIVE
NUMBER OF ITEMS

o
g—»
a
>

—

o We may verify that if this condition
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Solution when rent cost is negligible (cont.)

@ Unfortunately, the smallest shaded area - and thus the waiting cost - no longer
can be expressed as a function of n alone, independently of D(t).

@ Thus, it seems that a simple expression for the optimal cost cannot be obtained
for any D(t)
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Numerical solution — & 3 B} 3 EAL B 34

@ It can be formulated as a rolling horizon optimization problem in which a
shipment time, t;, is chosen at each stage (i = 1,...,n— 1), and where the
state of the system is the prior shipment time, t;_;. The optimization procedure
yields an optimum holding cost for a given n, zf(n), which can be substituted
for the first term of the following equation to yield n*.

cost/item = z(n) + cA(n/D(tmax))
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Numerical solution — Newell's method

The following procedure is less laborious and works particularly well if D(t) is
smooth, without bends or jumps (refer to figure for the explanation)

@ Choose a point P; on the ordinates axis and move across to Ty

@ Draw from P; a line parallel to the tangent to D(t) at Ty, and draw from T;
a vertical line. Label the point of intersection P,

Steps (i) and (ii) identify a point P> from a point P;. They should be repeated to
identify P3 from P,, P, from Ps, etc., defining in this manner a receiving step curve,
R(t). If R(t) does not pass through the end point, (tmax, D(tmax)), the position of
P; should be perturbed until it does.
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Numerical Solution — Newell’s method (cont.)

Dtpax f-———"———————————>
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! ar I |
I ‘
1 1
'0 ?I r2 l'rmn:
TIME

Figure: Construction method for the cumulative number of items shipped versus time
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The Continuous Approximation Method

@ The CA method replaces the search for {t;} by a search for a continuous
function, whose knowledge yields a set of t; with near minimal cost
o It works well when DY(t) does not change rapidly; i.e., if D'(t;) ~ D/(tj;+1) for

all i. A byproduct is a simple expression and decomposition principle for the
total cost
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The Continuous Approximation Method (cont.)

@ Let us assume that an optimal solution has been found, and denote by /; the
i—th interval between consecutive receiving times: [ti_1,t;),i=1,2,....

@ Then divide the total cost during the study period into portions “cost;" corre-
sponding to each interval. That is, “cost;" includes the cost, cf, of dispatching
one shipment plus the product of ¢; and the shaded area for interval /;

cost; = cr+ C; X area;

o Clearly, the sum of the prorated costs will equal the total cost. Since D/(t) is
continuous, it should be intuitive that there is a point t} in each interval /; for
which the area above D(t) satisfies:

area; = %(t; — t1)?D(8)*

*MYEBHERETERBHE ¢ LBEe, L PHMEAES ti—tim1, A D (8)(ti—
ti—1)
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The Continuous Approximation Method (cont.)

AL [tiog, t) RIA — A EZAG 12
o Consider the triangle defined by the horizontal and vertical lines passing through
a point P; in the figure and a straight line passing through T; with a slope that
yields “area;" for the triangle; i.e. slope D/(t}).

@ Since such a slanted line must intersect D(t) (otherwise the areas above D(t)
and above the slanted line could not be equal) there must be a point between
T; and the point of intersection where the two lines have the same slope. The
abscissa (444 4%) of this point is t.

Therefore we can write:

t;
area; — %(t 5 )RD(¢) = f %(t 4 )D(¢)dt
ti—1
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The Continuous Approximation Method (cont.)

. —
-

HEADWAYS

If we now define Hs(t) as a step function such that Hs(t) = t; — t;—y if t € I; (see
the figure above for example), then the cost per interval can be expressed as:

cost; = Lf [H:(t) + C"st(f) D'(t)]dt.

i—1
Note that this is an exact expression.
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The Continuous Approximation Method (cont.)

If we now approximate D/ (t;) by D' (t) — which is reasonable if DY(t) varies slowly —
the total cost over the whole study period can be expressed as the following integral:

cost; = Jti [H:(t) + Ci/-g(t) D' (t)]dt.

i—1

We seek the function H(t), which minimizes the equation above. Unfortunately,
this is akin to determining the {t;} themselves. A closed form solution can be
obtained if Hy(t) is replaced by a smooth function, H(t). That is:

cost; ~ Lmax[HC(;) + C"’Z(t) D' (t)]dt.

0

Now, instead of finding Hs(t), we can find the H(t) which minimizes the new
equation - a much easier task - and then choose a set of shipment times (i.e.,
Hs(t)) consistent with H(t).
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The Continuous Approximation Method (cont.)

Clearly, the H(t) which minimizes the RHS minimizes the integrand (4 #251) at
every t; thus:

H(t) = [2c/ (D' (£)]"2.

This is the time between dispatches (headway) for the EOQ problem with constant
demand D' = D/(¢t).

A set of shipment times consistent with H(t) can be found easily since H(t) varies
slowly with t.
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The Continuous Approximation Method (cont.)

The figure suggests how this can be done systematically.

@ Starting at the origin (point t) draw a
45°line and find a horizontal segment from
a point on the vertical axis, such as P;
in the figure, to the intersection with the
45°line.

@ The elevation of P; should be such that
the area below the segment equals the
area below H(t).

HEADWAYS

_o

@ The abscissa of the point of intersection is
the next shipment time, t;. This locates In practice one does not need to

t1, given to. be quite so precise, since we have
@ The construction is then repeated from t; already seen that small deviations
to locate tp, from t,, to locate t3, etc. from optimality have a minor effect.
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The Continuous Approximation Method (cont.)

Now we may calculate the total cost given the optimal H(t).

tmax

Total cost ~ J [2cicD (£)]Y/2dt.

to

The integrand of this expression is the optimal EOQ cost per unit time if D' = D/(t).
Note that the integrand in the equation can be written as

[2¢ice/ D' (£)]2[ D (1)dt]

where the first factor represents the optimal cost per item for an EOQ problem with
constant demand, D' (t). The average cost per item (across all the items) is obtained

by dividing the total cost by the total number of items D(tynax) = S;’)“ax D' (t)dt.

HHBRFE B %41 41/ 45



The Continuous Approximation Method (cont.)

The result is:

S [2cieD (1)]Y/2de
= tmax
gm D (t)dt

@ In practical terms the (cost/item)* expression indicates that the average opti-
mal cost per item can be obtained by averaging the cost of all the items, as
if each one of these was given by the EOQ formula with a (constant) demand
rate equal to the demand rate at the time when the item is consumed*.

@ The total cost expression indicates that, given a partition of [0, tmax] into a
collection of short time intervals, the optimum cost can be approximated by
the sum of the EOQ costs for each one of the intervals considered isolated
from the otherst.

@ These equations are so simple that they can be used as building blocks for the
study of more complex problems in following lectures.

This is one of the attractive features of the CA approach; it yields cost estimates

n define, a detailed solution to the problem.
*T o 09 AT AT LB I AT BTA W S R AR, mAEM R AN R AR EOQ A XA
T SN A BRAE AR .
VERAR G B R B BR[O, tmax] ZFAIHR) SRS T BB, R AR T4
ANIK s at i) e EOQ AR A Z Ar i A0
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The Continuous Approximation Method (cont.)

@ The CA approach can also be used to locate points on any line (time or
otherwise) provided that the total cost can be prorated approximately to (short)
intervals on the line, while ensuring that the prorated cost to any interval only
depends on the characteristics of said interval. In the previous discussion, the
integrand in the cost equation cost; ~ S;’)“”[H?t) + C"';(t) D/'(t)]dt is the prorated
cost in [t,t+ dt), which does not depend on the demand rate outside the
interval

@ The CA approach can also be used to locate points in multidimensional space,
when the total cost can be expressed as a sum of neighborhood costs dependent
only on their local characteristics. Newell (1973) argues that the CA approach
is comparatively more useful then, because in the multidimensional case it is
much more difficult for exact numerical methods to deal with the complex
boundary conditions that arise. Because the CA approach will be used in
forthcoming lectures repeatedly, the next section discusses two additional (one-
dimensional) examples.
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Readings

o Daganzo. Logistics System Analysis. Ch.3. Page 49-64
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Any questions?
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