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Logistics System Analysis

第 4 周 一到一配送问题（1）–批量问题
One-to-One Distribution–The Lot Size Problem
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Revisit of ideas of CA

Accurate cost estimates can be obtained without precise, detailed input data,
Departures from an optimal decision by a moderate%age do not increase cost
significantly. Since there is no need to seek the most accurate estimate of the
optimum, there may be little use for highly detailed data,
Detailed data may get in the way of the optimization, actually hindering the
search for an optimum,
Thus, we advocate a two-step solution approach to logistics problems: the
first (analytical) step involves little detail and yields broad solution concepts;
the second (or fine tuning) step leads to specific solutions, consistent with the
ideals revealed by the first — it uses all the relevant detailed information.
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本节学习内容

1 One-to-one systems with constant production and consumption rates -> the
robustness and accuracy of the results (Daganzo’s work)

2 One-to-one systems with variable demand over time -> numerical methods
and a continuous approximation (CA) analytical approach that is based on
summarized data(Newell’s work)

3 Extension of the CA approach to a location problem that has an analogous
structure

4 The accuracy of the CA solutions
5 Extension of the CA approach to multidimensional problems with constraints
6 Network design issues.
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Let us now explore the optimization problem for the optimum shipment size, v˚:

z “ tAv `
B
v : v ď vmaxu (1)

A “ ch{D1 表示单位货物保管费用∗, B “ cf 表示每批货物固定运输费用。
Consider first the case vmax “ 8 . Then v˚ is the value of v which minimizes
the convex expression Av ` B{v. v˚ “

a

B{A
The optimum cost per item is: z˚ “ pcost{itemq˚ “ 2

?
AB, which is easy to

remember as “twice the square root of the product” of the terms in 1
As a function of cf, ch and D1, the optimum cost per item increases at a
decreasing rate with cf and ch and decreases with the item flow D1. There are
economies of scale, since higher item flows lead to lesser average cost.

∗D1 表示单位时间生产量，每批货物的保管费用为 Av “ chH1D1{D1 ` citm “ chH1 ` citm，
ch “ cr ` ci 为租赁成本和在途等待成本之和。忽略常数项 citm，引入 H1 “ H̄ “ v{D1 得到表达式
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We now examine the sensitivity of the resulting cost to errors in
the decision variable, v
the inputs (A or B)
the functional form of the equation
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Robustness in the Decision Variable

Suppose that instead of v˚ , the chosen shipment size is v0 “ γv , where γ is
a number close to 1, capturing the relative error in v0. Then, the ratio of the
actual to optimum cost z0{z˚ will be a number, γ1, greater than 1, satisfying:

γ1 “ rAγ
a

B{A `
B

γ
a

B{A
s{r2

?
ABs “

1
2 rγ `

1
γ

s (2)

Independent of A and B, this relationship between input and output relative
errors holds for all EOQ models.

西南交通大学 葛乾 第 4 周 7 / 45



8/45

Robustness in the Decision Variable (cont.)

If γ is between 0.5 and 2, so that the optimal shipment size is approximated
to within a factor of 2, then γ1 ă 1.25. If γ is between 0.8 and 1.25, then
γ1 ă 1.025 Ñ A cost within 2.5% of the optimum can be reached if the
decision variable is within 25% of optimal.
If γ is several times larger (or smaller) than 1, then the cost penalty is severe,
i.e., γ1 « γ (or γ1 « 1{γ)
Obviously, while it is important to get reasonably close to the optimal value
of the decision variable (say to within 20-40%), from a practical standpoint it
may not be imperative to refine the decision beyond this level.
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Robustness in the data errors (cont.)

Let us now assume that one of the cost coefficients A (or B) is not known
precisely. If it is believed to be A1 “ δA (or B1 “ δB) , for some δ « 1, then
the optimal decision with this erroneous cost structure is:

v1˚ “

#

a

B{Aδ´1{2 “ v˚δ´1{2 if A1 “ δA
v˚δ1{2 if B1 “ δB

Because the actual to optimal shipment size ratio, v1˚{v˚, is either δ´1{2 or
δ1{2, the cost penalty paid is as if γ “ δ1{2. Thus, the resulting cost is even
less sensitive to the data than it is to the decision variables
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Robustness in the Data Errors (cont.)

If the input is known to within a factor of 2 (0.5 ď δ ď 2), then 0.7 ď γ ď 1.4
and γ1 ď 1.1. The cost penalty would be about 10%, whereas before it was
25%. The penalty declines quickly as δ approaches 1
This robustness to data errors is fortunate because the cost coefficients (for
waiting cost especially)are rarely known accurately
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Robustness in the Model Errors

A cost penalty is also paid if the EOQ formula itself is inaccurate.
To illustrate the impact of such functional errors, we assume that the actual
cost, a complicated (perhaps unknown) expression, can be bounded by two
EOQ expressions; the cost penalty can then be related to the width of the
bounds.
Suppose, for example, that the actual holding cost zhpvq is not exactly equal
to the EOQ term (Av), but it satisfies:

Av ´ ∆{2 ď zhpvq ď Av ` ∆{2 (3)

for some small ∆. Such a situation could happen, for example, if storage space
could only be obtained in discrete amounts. Because ∆ is small, the EOQ lot
size v˚ is adopted.
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Robustness in the Model Errors (cont.)

The absolute difference between the actual cost rzhpv˚q ` B{v˚s and the pre-
dicted EOQ cost z˚ cannot exceed ∆{2. It is also easy to see that the difference
between the optimal cost with perfect information, mintzhpvq ` B{vu, and z˚

cannot exceed ∆{2 either. As a result, the difference between the actual and
theoretical minimum costs — the cost penalty is bounded by ∆.
Usually, this penalty will be significantly smaller than the maximum possible
If ∆ is small compared to z˚ (e.g., within 10%) the functional form error should
be inconsequential. The same conclusion is reached if the motion cost is also
inaccurate.
In general, the EOQ solution will be reasonable if it is accurate to within a
small fraction of its predicted optimal cost.
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Unusual conditions generating the largest penalty
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Error Combinations

多种误差的组合带来的总误差，并不一定是简单叠加
If errors of the three types exist, one would expect the cost penalty to be
greater. Fortunately though, when dealing with errors the whole (the combined
penalty) is not as great as the sum of its parts
Suppose for example that the lot size recipe is not followed very precisely
(because, e.g., lots are chosen to be multiples of a box, only certain dispatching
times are feasible, etc.) and that as a result 40% discrepancies are expected
between the calculated and actual lot sizes. We have already seen that such
discrepancies can be expected to increase cost by about 10%.
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Let us assume that one of the inputs (A or B) is suspected to be in error by a
factor of 2, which taken alone would also increase cost by about 10%. Would
it then be reasonable to expect a 20% cost increase? The answer is no; it
should be intuitive that the penalty paid by introducing an input error when
the lot size decision does not follow the recipe accurately should be smaller
than the penalty paid if the decision follows the recipe.
In our example, the combined likely increase is 14% [the square root of the
sum of the squared errors: 0.14 “ p0.12 `0.12q1{2s. Statistical analysis of error
propagation through models reveals similar composition laws in more general
contexts.
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Error Combinations (cont.)

The previous example illustrated how input and decision errors propagate. Al-
though model errors follow similar laws – the whole is still less than the sum
of the parts – for some approximate models the results are surprising. The
composed (data and model) error can be actually smaller than the data error
alone with the exact model!
This fortuitous phenomenon has a special significance because it arises when
certain discontinuous models with discrete inputs are approximated by contin-
uous functions and data∗.

∗Daganzo, C.F. (1987) ”Increasing model precision can reduce accuracy” Trans.Sci. 21(2),
100-105.
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Problems with constraints

前面分析了在忽略 v ă vmax 条件时 EOQ 模型的稳健性和误差，同样的结论也
适用于带约束的模型和拓展模型。

The constrained EOQ solution is now presented rather briefly, before turning
our attention to the lot size problem with variable demand.
If we find that v˚ ą vmax in solving the unconstrained EOQ problem, then the
solution is not feasible. Choosing v “ vmax is optimal. Hence, the optimal
EOQ solution can be expressed as:

v˚ “ mint
a

B{A, vmaxu

and the optimal cost per item

z˚ “

#

2
?

AB if
a

B{A ď vmax

Avmax ` B{vmax if
a

B{A ą vmax
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Problems with constraints (cont.)

Note that z˚ is an increasing and concave function of A, and also of B.
As A “ ch{D1, z˚ is decreasing a function of D1 and convex; the economies of
scale continue to exist for all ranges of D1.
The total cost per unit time, D1z˚, is proportional to D11{2 until the capacity
constraint is reached, and from then on increases linearly with D1. The critical
point is D1

crit “ pvmaxq2ch{cf∗

∗固定 B，则总成本为 A 的函数，分段函数的间断点为
a

B{A “ vmax Ñ A “ B
v2

max
。代入

A “ ch{D1，可得 D1
crit “ pvmaxq2ch{cf
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Optimal EOQ cost as a function various parameters

Figure: Optimal EOQ cost as a function various parameters: (a) holding cost per item, A;
(固定 B) (b) fixed motion costs, B; (固定 A) and (c) demand rate, D1. Dashed lines are
the unused branches of z˚
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Problem with variable demand（变需求下的 EOQ 问题）

接下来考虑在有限时间区间内，消费量以可预测的方式变化的情况下的 EOQ
问题。

The demand pattern is characterized by a function Dptq that gives the cumu-
lative number of items demanded between times 0 (the beginning of the study
period) and t. The time derivative of this function D1ptq represents the variable
demand rate.
We then seek the set of times when shipments are to be received pt0 “

0, t1, . . . , tn´1q, and the shipment sizes pv0, v1, . . . , vn´1q, that will minimize
the sum of the motion plus holding costs over our horizon, t P r0, tmaxs.
As previously, we also define as inputs to our problem a fixed (motion) cost
per vehicle dispatch cf, a holding cost per item-time ch “ cr ` ci, and
a maximum lot size vmax. With an infinite horizon and a constant demand,
Dptq “ D1t, this formulation reduces to the EOQ problem examined in previous
sections.
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Solution when holding cost « rent cost

If inventory cost is negligible, ci ! cr, then holding cost approximately equals
rent cost ch « cr. We have already mentioned that rent cost increases with
the maximum inventory accumulation∗, and that otherwise the cost is rather
insensitive to the accumulations at other times. This property of holding cost
simplifies the solution to our problem.
Recall that given a set of n shipments, the motion cost during the period of
analysis, cfn, is independent of the shipment times and sizes†. The problem
is then to find the sets of shipment times and sizes that will minimize holding
cost.

∗cr ˆ D1H1 与保存所发生的时间无关
†移动的总费用与次数无法
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Solution when holding cost « rent cost (cont.)

A lower bound to the maximum accumulation at the destination is the size of
the largest shipment received. (Why?∗)
This lower bound minimized when all the shipments are equal.(Why?†)
Hence, the largest shipment – and, thus, the maximum accumulation – must
exceed or at least equal Dptmaxq{n, the set is an optimal way of sending n
shipments with rent cost per unit time: crDptmaxq{n‡.
Each shipment is just large enough to meet the demand until the next shipment;
the consumption between consecutive receiving times, the same in all cases, is
Dptmaxq{n§.

∗在目的地的积累量的一个下界为最大批量，意味着该批货物到达时刚好无存货
†每个批量相等，意味着最大批量即为平均批量。此时最大批量最小
‡每个批量相等且 n 次配送的总量至少为 Dmax，则显然每次批量 ě Dptmaxq{n
§每次的送货量刚好能满足两次配送之间的需求量
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Solution when holding cost « rent cost (cont.)

Clearly the following strategy is optimal:
Divide the ordinate axis between 0 and Dptmaxq into n equal segments and find
the times ti for which Dptq equals pi{nqDptmaxq for i “ 0, . . . , n ´ 1. These are
the shipment times,
Dispatch barely enough to cover the demand until the following shipment.

One must now find the optimal n by minimizing the resulting cost

cost{time “ crrDptmaxq{ns ` cfrn{tmaxs

cost{item “ p
cr

D̄1
qp

Dptmaxq

n q ` cfrn{Dptmaxqs

where D1 is the average consumption rate D̄1 “ Dptmaxq{tmax
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Solution when holding cost « rent cost (cont.)

Note that the formulation is the EOQ expression with v “ Dptmaxq{n. The
solution now requires that n be an integer (there are constraints on v), but we
have already seen that any v close to the unconstrained v˚ is near optimal. As
a result, unless the time horizon is so short that n˚ “ 1 or 2, the optimal cost
per item should be close to the cost with constant demand
If vmax ă 8, the solution procedure does not change. It is still optimal to have
equal shipment sizes, but the number of shipments should be large enough to
satisfy: Dptmaxq{n ă vmax. The solution is still of the same form, with v´1

restricted to being an integer multiple of Dptmaxq-1.
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Solution procedure
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Solution when rent cost is negligible

另一种情况与之前相反，即租金可忽略，但是在途的保管费用不可忽略。

This situation occurs when items are
so small and expensive, that most
of the holding cost arises from the
item-hours spent in inventory, and
not from the rent for the space to
hold them.
In this case the destination’s holding
cost should be proportional to the
shaded area of right figure
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Solution when rent cost is negligible

The combined origin-destination holding cost will also be proportional to the shaded
area:

if the origin holding cost can be ignored <— if the origin produces generic items
for so many destinations that the part of its costs that would be prorated (按
比例分配) to each destination is negligible.

if the origin holding cost is proportional to
the area. <— if the production strategy at
the origin is as described in figure below. The
total wait at the origin that can be attributed
to the shipping strategy must be similar to
that of the destination; i.e., it would also be
proportional to the shaded area

for typical passenger transportation systems
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Solution when rent cost is negligible

When holding costs are proportional
to the shaded area, they are no
longer a function of n alone.
For a set of points pt1 . . . tn´1q to
be optimal, each line PQ must be
parallel to the tangent line to Dptq
at the receiving timea (point T in
the figure)
We may verify that if this condition
is not satisfied, then it is possible
to reduce the total shaded area by
either advancing or delaying the re-
ceiving time by a small amount.

aNewell (1971)
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Solution when rent cost is negligible (cont.)

Unfortunately, the smallest shaded area - and thus the waiting cost - no longer
can be expressed as a function of n alone, independently of Dptq.
Thus, it seems that a simple expression for the optimal cost cannot be obtained
for any Dptq
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Numerical solution – 滚动时域优化思路

It can be formulated as a rolling horizon optimization problem in which a
shipment time, ti, is chosen at each stage pi “ 1, . . . , n ´ 1q, and where the
state of the system is the prior shipment time, ti´1. The optimization procedure
yields an optimum holding cost for a given n, z˚

i pnq, which can be substituted
for the first term of the following equation to yield n˚.

cost{item “ z˚
i pnq ` cfpn{Dptmaxqq
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Numerical solution — Newell’s method

The following procedure is less laborious and works particularly well if Dptq is
smooth, without bends or jumps (refer to figure for the explanation)

1 Choose a point P1 on the ordinates axis and move across to T1
2 Draw from P1 a line parallel to the tangent to Dptq at T1, and draw from T1

a vertical line. Label the point of intersection P2

Steps (i) and (ii) identify a point P2 from a point P1. They should be repeated to
identify P3 from P2, P4 from P3, etc., defining in this manner a receiving step curve,
Rptq. If Rptq does not pass through the end point, (tmax, Dptmax)), the position of
P1 should be perturbed until it does.
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Numerical Solution — Newell’s method (cont.)

Figure: Construction method for the cumulative number of items shipped versus time
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The Continuous Approximation Method

The CA method replaces the search for ttiu by a search for a continuous
function, whose knowledge yields a set of ti with near minimal cost
It works well when D1ptq does not change rapidly; i.e., if D1ptiq « D1pti`1q for
all i. A byproduct is a simple expression and decomposition principle for the
total cost
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The Continuous Approximation Method (cont.)

Let us assume that an optimal solution has been found, and denote by Ii the
i´th interval between consecutive receiving times: rti´1, tiq, i “ 1, 2, . . . .

Then divide the total cost during the study period into portions “costi” corre-
sponding to each interval. That is, “costi” includes the cost, cf, of dispatching
one shipment plus the product of ci and the shaded area for interval Ii

costi “ cf ` ci ˆ areai

Clearly, the sum of the prorated costs will equal the total cost. Since D1ptq is
continuous, it should be intuitive that there is a point t1

i in each interval Ii for
which the area above Dptq satisfies:

areai “
1
2 pti ´ ti´1q2D1pt1

iq
∗

∗阴影区域的面积等于需求函数在 t1
i 处取值时的，其中横轴长度为 ti ´ ti´1，纵轴为 D1pt1

i qpti ´

ti´1q
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The Continuous Approximation Method (cont.)

为什么 rti´1, tiq 区间内一定存在这样的 t1
i？

Consider the triangle defined by the horizontal and vertical lines passing through
a point Pi in the figure and a straight line passing through Ti with a slope that
yields “areai” for the triangle; i.e. slope D1pt1

iq.
Since such a slanted line must intersect Dptq (otherwise the areas above Dptq
and above the slanted line could not be equal) there must be a point between
Ti and the point of intersection where the two lines have the same slope. The
abscissa (横坐标) of this point is t1

i .
Therefore we can write:

areai “
1
2 pti ´ ti´1q2D1pt1

iq “

ż ti

ti´1

1
2 pti ´ ti´1qD1pt1

iqdt
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The Continuous Approximation Method (cont.)

If we now define Hsptq as a step function such that Hsptq “ ti ´ ti´1 if t P Ii (see
the figure above for example), then the cost per interval can be expressed as:

costi “

ż ti

ti´1

r
cf

Hsptq
`

ciHsptq
2 D1pt1

iqsdt.

Note that this is an exact expression.
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The Continuous Approximation Method (cont.)

If we now approximate D1pt1
iq by D1ptq – which is reasonable if D1ptq varies slowly –

the total cost over the whole study period can be expressed as the following integral:

costi “

ż ti

ti´1

r
cf

Hsptq
`

ciHsptq
2 D1ptqsdt.

We seek the function Hsptq, which minimizes the equation above. Unfortunately,
this is akin to determining the ttiu themselves. A closed form solution can be
obtained if Hsptq is replaced by a smooth function, Hptq. That is:

costi «

ż tmax

t0

r
cf

Hptq `
ciHptq

2 D1ptqsdt.

Now, instead of finding Hsptq, we can find the Hptq which minimizes the new
equation - a much easier task - and then choose a set of shipment times (i.e.,
Hsptq) consistent with Hptq.
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The Continuous Approximation Method (cont.)

Clearly, the Hptq which minimizes the RHS minimizes the integrand （被积项）at
every t; thus:

Hptq “ r2cf{pciD1ptqqs1{2.

This is the time between dispatches (headway) for the EOQ problem with constant
demand D1 “ D1ptq.
A set of shipment times consistent with Hptq can be found easily since Hptq varies
slowly with t.
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The Continuous Approximation Method (cont.)

The figure suggests how this can be done systematically.

Starting at the origin (point t0) draw a
45°line and find a horizontal segment from
a point on the vertical axis, such as P1
in the figure, to the intersection with the
45°line.
The elevation of P1 should be such that
the area below the segment equals the
area below Hptq.
The abscissa of the point of intersection is
the next shipment time, t1. This locates
t1, given t0.
The construction is then repeated from t1
to locate t2, from t2, to locate t3, etc.

In practice one does not need to
be quite so precise, since we have
already seen that small deviations
from optimality have a minor effect.
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The Continuous Approximation Method (cont.)

Now we may calculate the total cost given the optimal Hptq.

Total cost «

ż tmax

t0

r2cicfD1ptqs1{2dt.

The integrand of this expression is the optimal EOQ cost per unit time if D1 “ D1ptq.
Note that the integrand in the equation can be written as

r2cicf{D1ptqs1{2rD1ptqdts

where the first factor represents the optimal cost per item for an EOQ problem with
constant demand, D1ptq. The average cost per item (across all the items) is obtained
by dividing the total cost by the total number of items Dptmaxq “

ştmax
t0

D1ptqdt.
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The Continuous Approximation Method (cont.)
The result is:

pcost/itemq˚ “

ştmax
t0

r2cicfD1ptqs1{2dt
ştmax
t0

D1ptqdt

In practical terms the pcost/itemq˚ expression indicates that the average opti-
mal cost per item can be obtained by averaging the cost of all the items, as
if each one of these was given by the EOQ formula with a (constant) demand
rate equal to the demand rate at the time when the item is consumed∗.
The total cost expression indicates that, given a partition of r0, tmaxs into a
collection of short time intervals, the optimum cost can be approximated by
the sum of the EOQ costs for each one of the intervals considered isolated
from the others‡.
These equations are so simple that they can be used as building blocks for the
study of more complex problems in following lectures.

This is one of the attractive features of the CA approach; it yields cost estimates
without having to develop, or even define, a detailed solution to the problem.

∗商品的最优平均成本可以通过对所有商品成本的均值求出，而每件成本的成本由 EOQ 公式在
该商品被消费时的取值得出。

‡总成本的解释也是类似。假设 r0, tmaxs 之间被划分成若干短时间段，最优的总成本可通过每
个孤立时间段的 EOQ 成本之和近似
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The Continuous Approximation Method (cont.)

The CA approach can also be used to locate points on any line (time or
otherwise) provided that the total cost can be prorated approximately to (short)
intervals on the line, while ensuring that the prorated cost to any interval only
depends on the characteristics of said interval. In the previous discussion, the
integrand in the cost equation costi «

ştmax
t0

r cf
Hptq

`
ciHptq

2 D1ptqsdt is the prorated
cost in rt, t ` dtq, which does not depend on the demand rate outside the
interval
The CA approach can also be used to locate points in multidimensional space,
when the total cost can be expressed as a sum of neighborhood costs dependent
only on their local characteristics. Newell (1973) argues that the CA approach
is comparatively more useful then, because in the multidimensional case it is
much more difficult for exact numerical methods to deal with the complex
boundary conditions that arise. Because the CA approach will be used in
forthcoming lectures repeatedly, the next section discusses two additional (one-
dimensional) examples.
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Readings

Daganzo. Logistics System Analysis. Ch.3. Page 49-64
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Any questions?
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