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@ A transshipment is the act of taking an item out of a vehicle and loading it onto
another. Typically, transshipments take place at fixed facilities, i.e., terminals.

@ For modeling purposes, these can be viewed as a set of berthing gates con-
nected by an internal sorting, storage and transfer system. The berthing
gates accommodate the vehicles while they are being loaded and unloaded;
the sorting-storage-transfer system moves the items from one vehicle to an-
other. MIEALGY f L, X &P EARATALA — & FI 69 AL IR T, X 27 1]
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@ Although many different technologies exist depending on the freight that is
being moved, conceptually this makes little difference. (The internal transfer
system, for example, can use: carts on rails #ig i& i#% /s &, forklift trucks X
% conveyor belts /5% 45, idler rollers 453i% ¥ # 2 % or gravity chutes £ 7
7B 4%.) The emphasis at efficient terminals is on moving the freight quickly
with little allowances made for long term storage.

@ But if there is a need to accommodate seasonal fluctuations in demand, or to
hold inventories closer to the points of demand when response time is critical
and demand cannot be anticipated, terminals can also provide a warehous-
ing function.
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We study

@ qualitative properties of near-optimal systems, which allow the problem to
be treated analytically;

@ how systems where items are transhipped no more than once can be designed,
using an uncomplicated scenario as an illustration.

@ modifications to the procedure able to capture the following complicating fea-
tures: schedule synchronization, variable and uncertain demand, asym-
metric strategies, as well as constraints on locations, routes and sched-
ules.

@ multiple transshipment problem.

@ how to computerize the design guidelines
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@ Introduction

© Distribution with Transshipments
© The One Transshipment Problem
@ Multiple Transshipments

© Automatic Discretization
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@ After reviewing the reasons for transshipments in one-to-many logistics sys-
tems, we will show that finding the ideal spatial arrangement of terminals
is the critical step in designing a system.

@ The rest is easy because, for a given arrangement, there is a well defined set of
item paths, vehicle routes, and schedules that (nearly) minimize total cost.

HHBRFE B

G M AR — 5| § BLik M 6 /121



B 3& |Outline

9 Distribution with Transshipments
@ The Role of Terminals in 1-to-N Distribution
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@ Items are often transshipped when there is an incentive to change transporta-
tion modes or vehicle types.

@ While geographical barriers such as coastlines invariably require a modal
change (e.g. at seaports), purely economical considerations may also en-
courage changes in vehicle type.
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@ We realized that vehicles should be filled to capacity for the distribution of
“cheap” freight; i.e., where pipeline inventory cost is negligible compared to
the other logistic cost components.

@ Because the optimal cost was a decreasing cost of viax, we argued that (if
there is a choice) one should use the largest vehicles that the local roads and
the destination loading/unloading facilities can accommodate.

o If vehicle size is limited in the immediate vicinity of the customers, trans-
shipments at terminals in the general neighborhood of the customers may be
attractive, as this could allow larger vehicles to feed the terminals. 18.% % A4~
HBEAAAR GG B AR B Z ) 5T 4 B2 Rb AR, WA =HZ A& E F IR
Ak, BATARAREEZGEH/HIARAE R
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Effect of a transshipment on vehicle-miles traveled

() D—” . Figure (a) depicts one origin (the de-

pot) and four customers that receive di-

Depot Destinations
rect service once a day. Each daily trip
is represented by one arrow joining the
(b) D N i mad beginning and end of the trip. Let us as-
- e sume that the pattern of the figure is op-
Depot Terminal

timal for the situation at hand, and that

the trips are made by delivery vans, due

to the small access roads leading to the
e customers.

Depot Terminal
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Effect of a transshipment on vehicle-miles traveled

@ [] -

Depot Destinations
(b) [ . s
L A—Y
Depot Terminal

Depot Terminal

HHBRFE B

o If a terminal is introduced, the transporta-

tion cost can be reduced without changing
the service frequency to the customers (i.e.
the waiting cost at the destination).

The depot-to-terminal roads could ac-
commodate trucks, and terminal-to-
destination roads could be served by vans.
Capacity,,,ox = 2 x Capacity,,,. Only
2 trucks will be dispatched every day.
Destinations can still be served daily by
vans from the terminal

The transportation cost can be cut by a fac-
tor of & 2 while the holding costs at the
destinations keep unchanged
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Effect of a transshipment on vehicle-miles traveled

@ On the other hand, introducing a terminal
(a) H ad may increase holding cost at the origin —
Depot Destinations items now leave the origin in larger batches
— and introduces new handling and holding
costs at the terminal.

(b) l — @ Whether the distribution scheme of Figure
Depot Terminal (b) is advantageous will depend on the mag-

nitude of the transportation cost savings,
which grow with the distance between the
terminal and the depot, and with the size
difference between vehicles delivering to
the terminal and the customers.

Depot Terminal
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@ Recall that pipeline inventory considerations, in addition to operating restric-
tions such as the duration of a work shift, may restrict delivery route length;
very valuable items should not be delivered on many-stop routes.

@ A benefit from transshipments may be derived even if, due to route length
limitations, vehicles cannot travel full.

BHHRBLRFE B#H PR AR GHN A — 5] § B A 13 /121



@ To illustrate this benefit, imagine that the system in Figure (a) is optimal, and
that its vehicles leave the depot only 1/2 full. {E% 1 a ¥ &) RABE TR
12 5%

@ In other words, we are assuming that increasing (or decreasing) the delivery
lot size is not desirable because holding costs at the destination would then be
too large (or too small). % Z W KAk BLiZdn &, 3235 B 693ud9tRE %A,
ZMRGEREZRE, RHEMTRN;

o Furthermore, although one could presumable reduce costs by using delivery
routes with two stops without changing the delivery frequency, we also assume
that the loading/unloading operation is so slow that there is no time in a work
shift to make more than one stop and return to the depot. ﬂ)f% B Y
T T B ik F A RIRSG ARG, AT 0 BLIE IR &0 AT 4 T I ARE
WA ABRZATFE LRI, BAEH KRR, AETREAE—R®IE
NAEEE % T — AR E IR = 3] Bt b o,

@ Thus, without transshipments, the arrangement can be assumed to be optimal.

B TRALIEE, ZHIET A R
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(a) | ji *

Depot Destinations
(b) | | - =
55 .Y
Depot Terminal

Depot
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Terminal

@ Clearly, the introduction of transshipments

as in Figure (b) allows matters to be im-
proved, since the terminal allows the routes
to be broken into shorter segments. Al-
though deliveries still take place in half filled
vehicles, the terminal is supplied by full ve-
hicles. Further improvement is possible. &
b & 71 N9 3538 T4 A7 K BE 3 69 BLiZ A0
F AR REREWBREM ARG
Fith 69 R ARSI, B L A6 H KT A
A AL

Because the deliveries now start from a
place closer to the destinations, there may
be time to make more than one stop and re-
duce even more the daily distance traveled
for local delivery, as illustrated in Figure (c).
No change in delivery lot sizes results IL7&
RA&HWBIZMA EFERLE LI, At
R&W RERERTHE % T — AR
x, Rit— *F’“ﬂ&&ﬂ HIEMER, wH
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@ In summary, terminals allow us to decouple the line-haul transportation
and local delivery operations, enabling us to use larger vehicles for linehaul
than are used for delivery; they also increase the number of delivery stops that
can be made without violating route length limitations.

@ We will see in N-to-N problems that terminals can also play a “break-bulk”
role.
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9 Distribution with Transshipments

@ Design Objectives and Possible Simplifications
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@ The structure of a distribution system is defined by the number and location
of the transshipment points, the routes and schedules of the transporta-
tion vehicles, and by the paths and schedules followed by the items.

@ Usually, the number and location of the transshipment points cannot be changed
as readily as routes and schedules. The latter are tactical level variables, and
the former strategic variables. Since customers are usually not affected by
routing changes, the vehicle routes and item paths can often be viewed as
operational level variables, which can be changed even more readily than the
delivery schedules.
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@ For long term (strategic) analyses, decisions at all levels (operational, tactical
and strategic) need to be made. For this type of problem we will develop op-
timal system configurations assuming that the terminals can be opened,
closed and relocated without a penalty.

@ This simplification is not as restrictive as it may seem because, if conditions
change slowly with time, locations do not need to be changed often. If A(t, x)*
changes slowly with time, near-optimal terminal locations will be shown also
to change slowly with time (this dependence is even more sluggish than the
dependence of headways and number of stops on t) 8% & K& £ 14 & A 4]
o R IR A TAC R K, W) VOl SRR 69 AR 40 3 Bk T & B ) 69 AL AL BB X
AR TACH 0 B, AR VL BLIZ IR R Fo R 7 ) 69 BB KA AL R,

*demand per unit time unit area.
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Because the overall cost is not overly sensitive to the specific locations, one can
keep a given set of terminals for a long time before some need to be opened, closed
or relocated. In any case, relocation costs are likely to be greatly reduced by current
trends in the logistics industry, such as the advent of “third-party logistics” firms
that furnish full service terminal/warehousing facilities; & F & 09 m A5 4F 2 ik
X ARRR, EAPHBATFRK. LA, B2, EAENNRA. LEY
RAT LA B R ARG T AR KEAK, Plde, RELITH/CHIRSNEZ
7 W RIS .
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@ Unless the changes in A(t, x) arise from policy decisions (e.g. expanding the
service region over time), the timing of changes to A may be hard to pre-
dict. Without reliable information on them it might be reasonable to design
the system as if the changes occurred gradually, using a smooth forecasted
A(t,x) demand density, or else adapting to the current circumstances as
time passes.

@ In either case one would rarely expect the optimal distribution of terminals
to change rapidly with time, and it should be possible to design a strategy
for opening, closing and relocating terminals that maintains a near-optimal
distribution of terminals without large relocating costs.
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@ For the short term one may be interested in adjustments to the tactical and
operational decision variables. We may want to determine the best set of
vehicle routes and frequencies for a given set of terminals; including, of
course, the possibility of not using some of the terminals. These (tactical)
problems will also be discussed in the talk, although strategic analyses will be
its main focus.
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@ Obviously, the design problem is very complicated if considered with all its
details. Our immediate goal, thus, will be to reduce it to a form involving little
data and few decision variables, yet capturing the essence of the logistical
costs.

@ The remainder of this section is devoted to this endeavor; it describes some
properties of near-optimal distribution systems with terminals that allow the
formulation to be greatly simplified.
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@ The figure depicts a physical distribu-
tion network to carry items from one de-
pot to multiple customers. The network

5
\xG . . .
\C\ / includes terminals (dots on the figure),
[ | X and multi-stop vehicle routes (looping ar-
0 rows) that may stop at terminals and cus-
A ,
D\ tomers (x's).
*E
[ Distribution Center
e Terminals
% Demand Points
-~ Vehicle Routes
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@ Because we are only looking at distri-
~- bution, we shall assume that a vehicle
/ only loads items at the beginning of its
X route and only distributes them in suc-

X
B
Q/ ceeding stops. This is a reasonable as-

sumption because the within-vehicle sort-

1
C/\"G ing complexity and stowage/restowage
\x/ costs would increase substantially oth-
H erwise during a tour.  Even collec-

tion/distribution systems, for which the

L]
D\ savings of interspersing pick-ups and de-

. e liveries are obvious, tend to segregate
W Oistribution Center them on individual tours.
e Terminals

x  Demand Points
-~ Vehicle Routes

=] |
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[l Distribution Center
e Terminals

x  Demand Points
-~ Vehicle Routes

@ An item that needs to be taken to

destination F in figure may use vehicle
routes (OAO, ABCDA, and CFGHC), or
(OADO, DACED, and CFGHC) to get
there. In the first case, it would use path
OABCF and in the second case OAD-
ACF. If redundant network structures,
where some destinations can be reached
by more than one path (such as those of
the figure), can be shown not to be nec-
essary, we would like to rule them out
before starting any analysis. This is done
next.
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Near-optimality of non-redundant networks

Here we show that, in many situations, networks providing redundant paths are not
needed because total cost is concave on flow.
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Near-optimality of non-redundant networks

@ For the proof we focus on an operational problem, where the terminal locations,
vehicle routes and schedules are fixed but one can choose the item paths and
vehicle sizes. Then, the daily cost of transportation will be the sum of the
transportation costs on each route.

@ Each one of these route costs should only depend on the size of the vehicle used
on the route. Furthermore, the relationship should be concave and increasing
because of the economies of scale in vehicle size. Clearly then, on each route
we should choose the smallest vehicles able to carry the load.

@ Because the size of the vehicle must be proportional to the flow of items
on the first link of its route, and these link flows are linear functions of
the item path flows, transportation cost must be a concave function of the
path flows. #4695 % 5 € %42 F 5 — NRBA R B LB, mHEHR
09 R AL IR R D RAR AT R, B LR R AR BRI
R DAL ISR
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Near-optimality of non-redundant networks

@ Assuming that the path of each item is chosen at the distribution center 0,
independently of the time at which it becomes available for shipment
and of the characteristics of the item, we see that the average time that
items are waiting outside vehicles on a specific path is not affected by the path
selection strategy at 0; the average time is fixed.

@ Since travel times are also fixed, total inventory costs must be linear in the path
flows. Therefore, the total distribution cost (if rent costs are ignored) must
be concave in the path flows*. (We recognize that rent costs are not concave.
These costs, however, are typically small compared with transportation costs
and should, thus, be unable to reverse the effects of concavity.)

* B A A R AT B R AR B, LW/ i R b — AN SR R RO PR W ek
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@ Before discussing the implications of concavity, it is worth clarifying the two
exceptions that were made in the above argument.

o If the selection of a path for an item is allowed to depend on the time it
becomes available for shipment (e.g., passengers using public transportation
systems will often choose the first of several lines to depart, if there is a choice)
the stationary inventory cost depends on flow; examples can be built where
total inventory cost is convex in the path flows. Even in the (rare) case
where dynamic path selection is an option, it is unlikely that one would
provide multiple paths to exploit such dynamics. #i% B8] 7T it
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@ The second exception refers to items of different characteristics. As shown
in the 1-to-N distribution system without transshipment, sometimes it is ad-
vantageous to send items of widely varying prices per unit weight on different
paths (e.g., expensive items by air freight and cheap goods by land). #/& %
e

@ In such cases, the pipeline inventory cost is not linear in the path flow; it de-
pends on which items are sent on specific paths. The cost concavity argument
does not hold either.
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o If all customers are treated alike — asymmetric strategies where this is not
the case will be discussed later — and rent costs are not dominant, then total
costs are concave in the flows; in other words, there are scale economies.

@ In this case, as we showed in the 1-to-1 distribution system, only one path
should be used to reach each destination.
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@ These arguments also apply if the destination is an intermediate terminal be-
cause intermediate path flows are linear functions of path flows and concavity
is preserved. Consequently, path redundancy to either intermediate or final
destinations is not needed.

o If follows that each terminal, or final destination point, needs to be served by
only one vehicle route. Otherwise, the stop could be bypassed by all vehicle
routes carrying no flow to it for a reduction in transportation cost.
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@ This implies that each destination point should be on only one route from
only one terminal. That is, if we define the level-n influence area of a terminal
as the set of points that are served from it with n or less transshipments at
succeeding terminals, level 0 influence areas must form a partition of the service
area. —MNPEIBAGFE 0 B OERANECELE R 0 RAHE LV #iE
REF K EE, B0 Aok RIBM RIS R R4 — A2,

@ Since each terminal can only be on one vehicle route starting at another ter-
minal, the influence areas at every level must also form a partition. & F#& /4

PEMR AL T 5 — AN F R P AR A3 A42 b, R vl R RAM R — A

2%
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--—= Level O Influence Area Boundary
= Level | Influence Area Boundary
—— Level O Vehicle Routes

—— Level | (AndHigher) Vehicle Routes

Figure: A possible structure where influence areas are simply connected sets (with no
holes). We will reasonably assume from now on that influence areas are simply connected.
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Near-optimal operations

@ Given the dispatching frequency from every terminal, we describe here which
stops should be served from which terminals, and the structure of the vehicle
routes based at each terminal.

@ To build such routes in a near-optimal way for a given set of stops their length
should be minimized. Otherwise, a reduction in length could reduce total cost
through decreases in the pipeline inventory cost, and the transportation cost.
Thus, it seems logical to construct the routes with a VRP technique
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Near-optimal operations

@ We also need to decide which stops are to be served from which terminal.
It will be assumed that vehicle routes do not stop at both terminal and final
destinations.

@ This is reasonable (and common practice) because otherwise sorting and
scheduling work would increase substantially in size and complexity.

@ For systems with more than one level of terminals it will be assumed that
vehicle routes only stop at one level of terminal. This is also reasonable because
substantially different flows pass through terminals at different levels, and it
just doesn't seem economical to serve them equally frequently with the same
tour.

@ Thus, the routes from any level-j terminal® will be assumed to serve all the
level-(j — 1) terminals in the level-j influence area, or the customers if j = 0.

*We say that a terminal is of level—j if its items are transshipped a maximum of j times after
passing through the terminal. The terminal serves a level—j influence area.
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Near-optimal operations

@ As aresult, a set of influence areas and terminals (at all levels) defines the stops
served from every terminal. Since the VRP solution defines the routes, the
overall strategy is defined by a set of influence areas and a set of dispatching
frequencies
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Near-optimal operations

@ Because level-(n—1) influence areas are usually contained in much bigger level-
n influence areas (otherwise terminals would not be cost-effective), the flow
through a terminal usually is considerably smaller than the flow through the
terminal feeding it.

@ This, among other reasons such as restrictions to heavy vehicle travel on local
streets, makes it economical to distribute items in loads smaller than those
used to feed the terminal. Thus, each item-mile requires more vehicle-
miles during distribution from the terminal than while being fed to the
terminal.

o Consequently, in order to minimize vehicle-miles of travel, terminals should be
centrally located within their influence areas. This is true for influence areas
of all shapes.
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Near-optimal operations

@ The same location principle was applied to the one-dimensional terminal lo-
cation problem. Although the optimal terminal locations obtained in the one-
dimensional problem were not exactly in the center of each interval, the dis-
placements were slight.

@ Not surprisingly, the CA approximation with centered terminals was found to
be quite accurate. A two-dimensional analysis confirms that this simplification
leads to negligible errors.
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@ Unlike VRP zones, influence areas should not be elongated toward the depot;
their shape should be selected to be as close to a circle centered around
its terminal as possible, because this minimizes vehicle-miles.

@ Of course, perfect circles cannot be used because they would not fill the space,
but non-elongated shapes — “round” we call them — that approximate circles
(e.g. squares, hexagons, and triangles) should be appropriate. The specific
round shape used does not matter much
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@ It is thus possible to describe a near optimal system structure by the sizes of
the various level influence areas, /;(x), as a function of position — together
with the dispatching headways used at each level.

@ As stated earlier, this reduces the very complex design problem to the deter-
mination of just a few decision variables.

@ Building on this result, the following sections show how to estimate cost and
develop a system design for various scenarios.
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The Problem

o We will focus first on the problem with only one transshipment (finding
Io(x)). This most common case is also useful as a building block toward
multiple transshipment solutions.

@ The one transshipment problem is similar to the classical facility sizing and
location problem; it is slightly more complicated, however, because in addition
to facility sizes, service schedules need to be determined.
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o Consider an imaginary subregion of R that is located r distance units away from
the depot and exhibits a constant, stationary demand rate density (A items per
unit time and unit area) and a constant spatial customer density (0 customers
per unit area).

o We will find the optimal dispatching frequency and the size of the in-
fluence area /* in the imaginary subregion, assuming that vehicle routes are
constructed as described in 1-to-N distribution systems — the subscript “0" is
not used to index “I" because only level-0 influence areas are being considered
in this talk.
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© The One Transshipment Problem
@ Terminal Costs
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Produced items

If no effort is made to coordinate the inbound
and outbound (# 3% 5 # 3%) schedules at a
terminal, but the inbound and outbound head-
ways (H'; H°) are constant, the accumulation
of items at the terminal for a specific destina-
tion is given by the vertical separation be-
tween step curves such as those of the figure.
The average inventory cost per item is then
(ci/2)(H + H°)

CUMULATIVE NUMBER OF ITEMS
SPECIFIC TO DESTINATION n

TIME
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Holding costs at the terminal

@ The maximum accumulation of items of any type cannot exceed the maximum
vertical separation between the two curves. Since the item flow through the
terminal is Y = A/, the maximum vertical separation is )\/(Hi + H°). Thus,
a conservative estimate for the holding costs per item at the terminal (the
terminal serves an area of size /), is:

Ci

(5 + DIH] + (5 + DIH + (6 + A

2

where H* represents a (fixed) transfer time that an item must spend in the
terminal even if H' and H° were zero, and ct is the terminal rent cost coefficient
(in monetary units per item-time).
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Holding costs at the terminal (cont.)

The waiting costs per item at the terminal

(2 + &[H] + (g + ) [H] + (i + ) H*

are a sum of three separable components:

@ a first term which only depends on H' and is identical to the term that would
have existed if the terminals had been the final destinations;

@ a second term which only depends on H° and is identical to the term that
would exist if the terminal had been a depot producing items at a constant
rate

© and a third term which is a constant penalty
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Discourage small terminals

@ For more realism we may also want to include a minimum rent to be paid per
unit time ¢¢, even if the maximum accumulation is zero. This will discourage
the operation of very small terminals. Prorated to the items served in one time
unit, the minimum rent is c2/(\/) ; thus, the third term becomes:

CO
. HHE 4+ Zr
(ci+c)H + N

@ This expression only accounts for the holding costs specific to the terminal;
i.e. costs added by the transshipments, and not included in the sum of costs
of distribution to the terminals and the cost of distribution from the terminals
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Handling cost

@ In addition, items passing through the terminal must pay a handling cost
penalty, which will have three terms: the cost of unloading the vehicle, the
cost of sorting and transferring the items internally and the cost of loading the
outbound vehicles.

@ The 1st term is the same that would have to be paid if the terminal was a final
destination, and the 3rd term the same as if the terminal was the depot; these
two terms will be captured later.

@ The 2nd term is terminal-specific. Its magnitude, on a daily basis, should grow
roughly linearly with the number of items handled A/, expressed as a cost per
item, it should be of the form:

c?/(A\D) + ch

where ¢? and ¢ are handling cost constants that depend on the nature of the
items and the terminals.
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@ The total (motion plus holding) cost specific to the terminal is the sum:
terminal cost per item ~ as + ag//

where a5 = (¢t + ¢;H" + ctH') and ap = (¢ + ¢?)/A.
@ Note that this expression is independent of H' and H°. It captures the costs

not included in the sum of the costs of distributing to the terminals (inbound
costs Z'), and the costs of delivering from the terminals (outbound costs z°)
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© The One Transshipment Problem
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Inbound Costs

@ The total logistic cost, in addition to the terminal cost, must include all inbound
and outbound costs. These costs already have been studied, as in the 1-to-N
systems z = ap + £3 + Z + a3ns + Qs St N5V < Vinaxi s > 1 0,48 T A&
A EH R A A AR

@ The inbound cost would be given by the minimum of total motion cost as
applied to a problem where the terminals are the final destinations. Thus,
Vmax IS the capacity of the vehicles used to feed the terminals, and the spatial
density of customers § becomes the density of terminals /71, Je ¥ 3:4K 41 & %
Aoy, W 13 % EE R LGB RANKALT U 2] sk A6+ 5

o Care must be exercised in solving the equations. For large /, constraint ns > 1
may be binding. It may be optimal for vehicles to visit only one terminal at
a time (n¥ = 1). Other constraints for route length or number of stops may
also have to be considered

*ao = ¢+ cir/s + cits/2; a1 = 2rcg + cs;ap = cgkd 12 4 a3 = 1/2c,-(k5_1/2/s+ ts); g =
Ch/D/
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@ In solving the problem we may also want to alter the value of k (the VRP
dimensionless constant for the distance added by each stop) to reflect the fact
that stops will now be (roughly) on a lattice. ¥ BB & X 8 oA £ M #% L,
A 577 AR RS B kB AR

o This coefficient declines a little, but the change is only on the order of 15%*.
When there are more stops per tour than tours (this is highly unlikely when
distributing to terminals) the change in k' is also small. % & AN3rA2 BT IR 4549
FRER % THRAZKET, k BRI

*See Problem 5.2
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@ In any case, the minimum inbound cost will be a function of decision variable
I only. This function will decrease with / because the more concentrated the
demand becomes at fewer terminals (/ — o) the cheaper it is to serve it. %
REMEPFE— PR, JRGE & &G RAAMK

@ Note that the minimum cost per item can depend on parameters r and A\ but
not on §. It will be denoted: Z/(\,r, /). The cost per unit area and per unit

time, AZ, will share the same properties
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@ The outbound cost per item depends on the density of destinations, but not
on the distance from the depot. It can be calculated with the continuous ap-
proximation method, as if the terminal were producing items for the customers
in its influence area, and averaging the result across the influence area in the
usual way.
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o Let z,(\, r, ) denote the per-item cost of serving without transshipments a set
of customers located r distance units away from a depot (the terminal) when
the demand rate density is A and the destination density is ¢ .

@ This function is also similar to the logistics cost in the 1-to-N distribution
system, but it may be somewhat different than for inbound costs because:

@ customers may be randomly scattered (not on a lattice like the terminals)
@ vehicles may have smaller capacities

@ travel speeds may be lower
@ perhaps all the customers do not need to be visited with each dispatch
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@ According to the continuous approximation approach, the cost per item de-
livered from the terminal can be approximated by averaging z,(A, r,d) over r,
where r is now the distance from points in the influence area to its terminal.
We will denote this average, independent of r but a function of /, by a capital
“Z" superscripted by “zero” — the level of the influence area — Z°. Thus:

22\, 6, 1) = Ez0(N\, 6, 1)]

@ 7y increases with r, and that in some cases (e.g. when the vehicles are filled to
capacity*) it does so linearly. It is thus reasonable to substitute E,[zo(), r,0)]
by zo(A, E[r],d), and to approximate E(r) by a simple function of /.

*total combined cost per itema [cs + 2¢gE(r)]/Vimax + <, + 2{cr[cs + cqkE(5—/?)]/D'}1/2 and
total motion cost per itema L + 22 4 g vinax

Vmax
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Since influence areas will be drawn to approximate circles and the density of des-
tinations is approximately uniform, we can assume that E(r) is 2/3 the maximum
distance from the terminal, (//m)}/2*, and thus:

2 [1
f@@024<x¢ﬁﬁ>=m(xowwaﬂ
3Vnw

which increases with /, (linearly with //2 in some important cases

) AR — B ) o 80 9B B GO AR 2R/3, LBt 89 42 A (I/m)h2
BHHRBLRFE B#H WRARGHMN A —5) § Bk M 61/ 121



B & |Outline

© The One Transshipment Problem

@ The Design Problem
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The Design Problem

[a]
E The next step consists in writing a logistic
= Total cost function that relates the total cost per
| . L - .
i item distributed to the decision variables of
= d Outbound the problem. In our particular case, the total
E ! cost per item distributed is the sum of the
o ' terminal, inbound and outbound costs:
@ | Inbound i 20
U

21 Terminal lOé5 + Oé@/{-‘r lZl()\7 r, /)l +| ()\, d, /)I

I* - terminal inbound outbound

I
SIZE OF INFLUENCE AREA
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@ The value of / that minimizes this expression is the size of the influence area
which we would like to use. Values of [ larger than the service region size,
|R|, do not need to be considered. The optimum influence area size, /*, should
usually grow with the distance from the depot but it can also be independent of
r, e.g., as occurs with the “cheap item" scenario leading to ﬁ + % + (4 Vimax -

@ The minimum cost obtained with the above expression, denoted zf (\, r,d) be-
cause one transshipment is used, should be compared to the cost of distribution
without transshipments, zo(A, r,d). Only if Zf < zy should transshipments be
used. The cost per item with up to one transshipment z; is the minimum of
Zf and zp: z1 = min{z, Z'}.
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25(2,1,8)

zft)\,r‘S)

: 2, (\,1,8)
|

L

DISTANCE FROM THE DEPOT, r

COST PER ITEM DELIVERED

Critical Distance

The figure depicts this relationship as a func-
tion of rfor constant A and 6. As we have in-
dicated, zy increases with r; z’l“ also increases
with r, but at a lower rate for large r. If the
curves don't intersect, then terminals don't
have the potential for reducing cost. We have
already seen that terminals are beneficial if
there are restrictions to the size of a lo-
cal delivery vehicle and/or route length
limitations, but in the absence of such limi-
tations transshipments are likely to be unnec-
essary
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@ The expected total cost per unit time over P, any subregion of R, can be ob-
tained even before a solution scheme is constructed, by integrating Az (A, r, 0)
over P. Expressed per unit time, the total cost, again denoted by a capital
“Z",is:

Z4H(P) = f Az (A, r, 6)dx,
P
where A, r,and § can be slow varying functions of x. The subscript “T" alludes

to “total cost per unit time” and the superscript to the maximum number of
transshipments allowed.
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(a)

BHHRBLRFE B#H

This figure depicts the loci of points in R for
which level—0 influence areas have five differ-
ent sizes. This could be the result of solving
the idealized model for different points in R,
with different A, r and §. These sizes were
chosen to increase relatively fast to make the
5 partitioning more difficult. Points in between
the curves require intermediate sizes.

EEe
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This figure shows a possible partition of R
(b) that conforms fairly well with the stated re-
quirements.
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@ In general, the complete design can be obtained as follows. First carve out
“round” influence areas that pack and conform to the calculated sizes /(x) as
well as possible, as we have just shown. Then locate the terminals near their
middle, obeying any local constraints that may exist. Finally, determine the
optimal operating strategy within each influence area using the techniques for
the 1-to-N distribution systems, separately from the others. % #&94% 3+ 3¢
B, SEBRFANGFSTE LN I(x) XKD FaRR; Re, £
»‘iEfK"’Jf’Ré’Jﬁf‘ﬁT Foop SAR 200 B T H AR F 0 }}i)é‘, AF 1%

BERART AL, AHNYh R B R EE Kk
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@ Note from the figure that while many points in R do not belong to an influence
area of the right size, few have to be enclosed in areas that are off by more
than 50% from the target size. Larger discrepancies should be rare in practice.
Discrepancies of typical magnitude introduce little error into the resulting cost,
Z-(R), since the logistic cost function is usually rather flat around its minimum
with respect to /
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as 4+ ag/l+Z(\ r, )+ 22(\, 6, 1)

terminal inbound outbound

@ The solution to problem 3.10 illustrates this fact by examining cost functions
of the common form: al? + BI72(a,b < 1). For this kind of expression the
chosen value of / can depart from the optimum by as much as 50%, and the
resulting cost will still be within a few percent of the optimum. When a and b
are smaller than 1 the solution is even more robust than the EOQ expression
(the case with a = b = 1). We can be reasonably sure as a result that demand
points do not have to be enclosed in influence areas of the precise size for a
solution to be near-optimal
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o For example, if (i) moderately priced goods have to be delivered to fixed retail
outlets, (ii) vehicles can make multiple stops, and (iii) no terminal economies
of scale exist (g = 0), then the cost function consists of a constant, a term
proportional to /*/2 and a term proportional to /~1/4.

@ Then, | could be 1.5 times larger or smaller than /* and cost would only
increase by about 1%. Although not quite so robust, the example about to be
introduced exhibits a similar behavior.

@ Among those problems explored (involving various underlying metrics, deliveries
of people and goods, routes with and without multiple stops, deliveries to
fixed retail outlets, and individually located customers, etc...), the example
corresponds to the set of conditions that makes the cost most sensitive to /.
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EX

@ Here we consider a region R with constant A and §. Line-haul vehicles shuttle
between a distribution center and consolidation terminals.

@ Neither local nor line-haul vehicles are allowed to make multiple stops because
the cost (and delay) of a stop is large compared with that of the moving portion
of the trip. This could happen for air transportation of valuable goods.

@ In our case, local transportation vehicles pick up their loads at the consolidation
terminals and distribute them (non-stop) to destinations scattered over the
terminals’ influence areas. Local vehicles are assumed to have a small capacity,
Vmax, and to travel full; i.e, the solution to the minimum combined cost is
ns =1 and v= vpax.
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@ To make things easier we also assume that the pipeline inventory cost and rent
costs can be neglected; i.e., ¢y, = ¢;. We then see that the minimum cost is of
the form:

a1 + 2rcy cpo
zo(A\, r,0) = — + (4 Vimax = constant + ” + =\ Vimax-
max max

The expression is a direct result since the local distance vanishes as ng = 1 and
the average customer demand rate is D' = \/§
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To simplify the notation, we will ignore the constant term and introduce two con-
stants “a" and “b" (a = ¢pd and b = 2¢,4/2.7) so that:

aVimax 2.7b
ZO()‘a I',é) = T + (Vi

)r.

The first term is the stationary holding cost and the second term, the component of
transportation cost that is sensitive to distance. For this example, zy is independent
of §, and so is the outbound cost function*:

AdVmax n b /1/2.

Vmax

22\, 6, 1) =

*Z20(0, 8, 1) = zo(X,0.381728). b RAT BN r H# 4 ;0.38/42 343,
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@ Inbound transportation to the terminals is assumed to take place on larger
vehicles, of capacity V. ., > Vmax and cost per mile ¢, operated at capacity so

that the cost Z*(\, r, /) will be (for a demand rate D' = \/):

Zi(/\,r,/)zm+a4\/ = constant +£+i\/

max max
‘/max mEIX AI

e Using & = ¢, b/ = 2}, again and ignoring the constant we can write:

. V. b
20 ) = (a ;) <+ <‘/r>

The first term of this expression represents inventory cost, and the second the
cost of overcoming distance. Inventory cost must increase with the number
of destinations; as such it is proportional to I~1. Other costs (handling, etc.)
that don't depend on I, r, or A would appear as part of the omitted additive
constant.
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o Let us assume that terminal costs are proportional to flow (cwg = 0). Then they
can be ignored, and the optimal influence area size is the result of a trade-off
between the cost of overcoming outbound distance from the terminals (%/1/2)

and the stationary inventory cost from inbound distribution ((%) 1); the
solution is:

=

bA

Therefore the one-transshipment cost is:

23 , 1/3
* Vimax b'r b a
~ — +1. —V )
Zi ~a 3 + v +1.89 (Vmax Y, Vimax

max

[23/ Vinax Vi } 2/3
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e 23 Vinax Vinax 2/3
= )

@ The optimal size of the influence area increases with the 2/3 power of the
vehicle capacities and decreases with the 2/3 power of the demand density; it
does not depend on the distance, r, from the distribution center.

@ This is logical, because changing r does not alter the terms traded off.

@ These qualitative conclusions, however, are specific to the conditions of the
example.
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@ To see how they would change, assume that the inbound vehicles, still restricted
to making one stop, now can carry as many items as desired (V,,, = o0).

Then, the loads carried would be the result of an EOQ tradeoff, and instead
of Z(\, r, 1) = (i/{"ax) i+ (‘f/’) we would have:

max

: b\ Y2 2Vimax abr\?
z’(/\,r,/)=2<)\l> andl*-( b ><)\> .

@ The optimal solution is no longer insensitive to r; it grows with r as indicated
earlier. It also varies with a smaller power of A and a larger power of Vpax.
The optimal cost also depends on r and A, although somewhat differently:

o b 1/2 /b/ 1/4
z’fgav/\ +2.83<v ) (a)\r) .
max
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@ It should be easy to design a system with influence areas close to /* for most
points. Failure to select an / equal to /* does not result in large increases in
cost. For both examples a 30% deviation from /¥ results in a cost increase
below three percent; for 20% deviations cost increases less than 1%.

@ These percentages refer only to the two cost terms that depend on /; otherwise,
the percentages would be even smaller. The dependence of cost on / (and its
sensitivity to errors in A and d) tends to weaken even more when multiple stops
are allowed; the conditions of the example are unfavorable.
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View of the Level-I Influence Area

Hd KB R

B

Level O Influence Area Boundary
Level | Influence Area Boundary
Level O Vehicle Routes

Level | (AndHigher) Vehicle Routes
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View of the Level-I Influence Area (cont.)

@ The figure depicts a level-1 terminal and its influence area, whose size is now
denoted /1 (x). Recall that all the customers in a level-1 area are served from
the level-1 terminal with at most 1 transshipment, not including the one at the
level-1 terminal, and that the level-1 terminals themselves are served without
transshipments from the depot.

@ This structural organization makes it easy to express, conditional on /i, the
inbound, outbound and terminal costs for a level-1 terminal; the logistic cost
function is now:

cost/item = (as + ag/h) + Z(\, r, h) + Z*(\, 6, 1)
L 1L 1L 1
terminal cost inbound cost  outbound cost
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25(A,1,8)

zT(P\,r,S}

z](k,r,S)

Critical Distance

COST PER ITEM DELIVERED

DISTANCE FROM THE DEPOT, r

@ The terminal and inbound costs as-

sume the same functional form as
in the expression for distribution
systems with one terminal, since
the cost of delivering and passing
through the level-1 terminals does
not depend on how the items are
treated once they leave them.

The outbound cost is superscripted
by “1" since Z; should now repre-
sent the average of z (A, r,d) in-
stead of the (larger) z (A, r, )
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@ Multiple transshipments are unlikely to be advisable for most physical distri-
bution applications, because each additional transshipment generates ad-
ditional handling costs and the vehicle economies (viax vs. V,,,,) can be
achieved with just one transshipment.

@ In any case, systems that allow multiple transshipments can be designed, using
the one-transshipment results as a building block.
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This lecture presents a simple recursive technique to this effect, and illustrates it
with an example. The technique uses the function z, (A, r, d) to construct a function
73(\, r, §) representing the minimum cost per item with at most two transshipments.
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Outbound cost of the level-1 influence area

@ We may want to approximate the average cost by the cost of the average:
ZH(N, 6, 1) = 2 (X, 0.38//2,6)

but the accuracy of this approximation will now have deteriorated because z;
is more highly non-linear as a function of r than z.

@ One may instead opt for using the exact definition:
ZH\ 6, 1) = Efzi(\, 8, 1)]

@ Either one of these expressions can be used to find the minimum of the logistics
cost with respect to ;. The result should be a function of A, r, and §.
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@ Z5(A,r,8), as a function of r, should start higher and be flatter than either z
or zf. A BB RBRATREK, 22 ALAHERFE N —%kE#iE,
BEL

@ As a result, we may find a second critical distance beyond which two trans-
shipments are needed (25 < z). For most practical problems, this distance
is likely to be large compared with the distance between the depot and the
farthest reaches of R.

BHHRBLRFE B#H PR AR GHN A — 5] § B A 90 / 121



@ |t is theoretically possible, but practically unnecessary, to iterate this procedure
to obtain the optimal size of higher level influence areas. The technique can
also be applied if shipments are to be synchronized at the level-1 terminals and
also if constraints require a more extensive list of conditioning variables for the
decomposition principle to apply.

@ In this case one would minimize Z, (X, r, I, H')+22,(), §, I, H°)+(c,+cp) max[HC; H
(a5 +agl™t) holding H; constant, and this variable would appear in the expres-
sion for Z;. The new expression would then include the inbound and outbound
headways as decision variables, in addition to
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@ In order to design the system one would carve out the service region into
influence areas approximating the ideal size /;(x). Of course, this only needs
to be done for the portion of R lying beyond the second critical distance.

@ The headways at the level-1 terminals, a byproduct of the optimization, can
be used to construct the level-1 feeder routes and schedules.

@ Within each level-1 influence area, the system can be designed as previously.
An example illustrates the procedure.
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@ The example that led to Zf in the primal one transshipment problem is con-
tinued here.

@ To simplify the notation we will give some arbitrary values to the constants
that appeared: vpax = b = b = a/A = /A = 1, and will then eliminate
these variables from the notation. We assume that the demand and customer
density do not depend on location or time, and use the case with v, = .
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Recall the cost expressions:

. 2.7b
(A, r,d) = 3Vima +[ lr=1+27r
>\ Vmax
max b
2(\0, 1) = w2 pr_ g b2
)\ Vma><
) 'y 1/2
ZOrl) =2 ("’M’) = 2(r/ly) /2
71\ 1/2
o~ 2Vmax ab'r _ o2
b )
1/2 'y 1/4
7 g +2.83< b ) (a r) —1+28/4
Vmax A
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Putting in the given values, we know

a 6
w
zg=1+2T7r g 5
2 =1+ Saf
i o
2(1,10) = 2(:/6)", = | z,(\,r,8)
=272, ., :
ZT =1+ 2.8/’1/4. E | Critical Distance = 1.05
z Vo
Thus O 00 | > 3

z1(r) = 1+ min{2.7r,2.8/*/4}

Note that when r > 1.05, transshipments become necessary.
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To calculate Z*(h), one should take the expectation of z;(r) for the r values that
arise in an influence area of size I : re [0, (h/7)%?].

o For small influence areas (i < 0.2971),z(r) =1+ 2.7r and
ZMh) =1+ 2 if b <0297

In this case, the level-1 influence area is not large enough to require another
transshipment.

@ For /; > 0.297, we find
ZH(h) =E[zi(A, r,9)]

1.05 (h/m)"? 1/a
27wr A% x orr
21 :1+2.7J Ldr+2.8J r'emryy
(h) o (h/m)?2 Los (h/m)2

—14+2.17(F® — [T if i > 02071,
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Applying the optimal ff, cost per item now becomes (remember that we assumed
Qg5 = g = 0)

4= 2(r/h)2 41 + 12 if h <0297
/)2 + 1+ 217(R8 — 1Y) if b > 02971,
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@ This expression should now be min-
imized for all values of r. For
this particular problem the task is
easy. One can find for every [}, the
value of r that makes it optimal —
and one can be plotted against the
other.

@ The right figure plots the reciprocal
(%X H) of If as a function of r.
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Optimal density of terminals as a function of distance

@ The right figure plots the minimum
cost as a function of r as well.

@ When r reaches 3.75, the cost, z},
equals z;. For larger values, two ter-
minal shipping is best

HhRBRE B

COST PER ITEM DISTRIBUTED
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Partition of service zone into influence areas

o This figure depicts a pos- IN'2 i

sible configuration of influ- a7y { 25
ence areas for a square of =
side that attempts to be | [36-f

(O No Transshipment
o One Transshipment

O Two Transshipments

true to the density of ter- &o=15{ 3 --——;?1cculszflml;;:cenrea
minals shown in the preVi— 2—4 Should be of A Given Size
ous page

@ For this particular problem ? e e e
the task is easy. One can P il g IS B I
find for every [, the value
of r that makes it optimal £/

— and one can be plotted
against the other.
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Partition of service zone into influence areas (cont.)

@ Unfortunately, the size of the influence areas forces them to include points that
would be better served with larger or smaller influence areas. For example, the
level-1 influence zones have an area of approximately 20 units, but they include
points that optimally would require ; = 13 to /; = 42, plus a few corners with
even more stringent requirements.

@ Inspection of the expression for cost per item, reveals that variations from the
optimal /; by a factor of 2 only increase the objective function by about 1%.

@ This robustness is even more pronounced than that observed for level-0 influ-
ence areas because the exponents of the objective function are now closer to
zero

= the departures from optimality observed in the previous page should not matter
much.
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Fine-tuning

@ The exact location of the boundaries and terminals can be fine tuned if desired,
but since they are fairly round and centered, respectively, the configuration
shown should be nearly optimal.

@ In fact, even the precise location of the boundary between 2 and 1 transship-
ment service areas is not particularly crucial. The following section describes
an automatic way to fine-tune, or even develop a design.

BHHRBLRFE B#H PR AR GHN A — 5] § B A 103 / 121



@ Introduction

@ Distribution with Transshipments
© The One Transshipment Problem
@ Multiple Transshipments

© Automatic Discretization

«O>» «Fr «E» <

>

A
104 / 121



& Bk 9] R

@ Before starting, we should mention that the design problem has also been
treated in the literature as a pure optimization exercise - without resorting to
the CA approach. In the applied mathematics literature the problem is called
the “optimal resource allocation problem™*

@ Pertinent works seek cost-minimizing locations for point-like service facilities
in a space continuum, among a continuum of customers. Unfortunately,
these optimization problems turn out to be “easy” only when cost is defined
as a simple function of a distance norm.

@ This cost structure, e.g., with the translational symmetry implied by a norm,
is unrealistic for typical logistics problems where costs are complicated and
almost invariably location-dependent.

*see Okabe et al. (1992) and Du et al. (1999)
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@ More realistic cost scenarios can be analyzed by considering discrete versions
of the problem with only a finite number of locations*.

@ Problems of this type are usually solved with mixed-integer programming tech-
niques, where the terminal locations and customer allocations are decision
variables.

@ But unfortunately, existing programming methods can only deal effectively with
small problems if they have complicated cost structures.

*An extensive operations research literature explores this line of inquiry; see e.g., Daskin (1995)
and Drezner and Hamacher (2002).
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@ The manual method overcomes these drawbacks. It succeeds, e.g., as in the
example of multiple transshipments because it decomposes the problem in two
manageable parts.

o We first look for a continuous target /*(x) without paying attention to the
discrete locations, and then delegate the difficult but non-crucial task of finding
the specific locations to the human mind. As explained in the design problem,
the human designer is simply asked to partition the service region into “round”
influence areas {/;} of a size consistent with the CA target /*(x), and a set of
centrally-located terminals {x;}.

@ The remainder of this lecture * shows that this second step can also be per-
formed automatically, even for large problems.

*Quyang, Y., & Daganzo, C.F. (2003). Discretization and Validation of the Continuum Ap-
proximation Scheme for Terminal System Design. Transp. Sci., 40, 89-98.
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@ Because roundness is important, we first look for a set of nonoverlapping cir-
cular disks contained within the service region, of individual sizes as close the
ideal /*(x) as possible.

@ The number of disks is given by the CA procedure: N = {/*(x)"1dx. More
specifically, if we characterize the disks by their centers x; and their radii r;
(for i=1,2,...N), we look for a set of (x;,r;) that satisfy: I*(x;) ~ krr? for
i=1,...N, for a value of k as close to 1 as possible.

@ Once this is done, we generate influence areas by allocating each point in
the service region to the nearest x;. This is the right thing to do because
it guarantees that the influence areas so generated contain one disk a piece.
Therefore, they must be “round” - assuming that a solution with k ~ 1 has
been found.
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e To find a set of disks, we assign some initial values to the (x;, ;) and model
the disks as if they were physical particles that (i) are repelled when they
overlap either with each other or with the boundary, and (ii) change radius as
they move over the service region with the recipe: r; ~ [F*(x;)/kn]/?. If k is
sufficiently large, a discrete-time simulation of this system quickly leads to an
equilibrium where all forces vanish and there is no overlap*.

@ The simulation is then repeated with a smaller k. A step-wise gradual reduction
in k is continued until an equilibrium cannot be found. This will happen before
k = 1, since circles do not partition Euclidean space. The procedure is then
terminated.

@ This procedure can quickly find good designs to problems of practical size.

*This assumes that the service region is “simply connected”, in the sense that a disk of proper
size can always be slid between any two points in the service region without touching the boundary.
No generality is lost by this assumption, because complex areas (e.g., Japan) can usually be
partitioned into simply connected components to which the model can be applied separately

freported in Ouyang and Daganzo (2004)
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Service area with uniform terminal density
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@ The figure shows how the method converges in a case where the best design
is known. The region is poly-hexagonal with N = 7, and the target area size
I*(x) is independent of location. The best design is shown in (a), and (b)-(d)
show the production of the algorithms of (1) initial locations, (2) location after
200 iterations, (3) equilibrium after 440 iterations respectively.
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@ The algorithm has also been applied to the example in lecture on the one
transshipment problem using /* = 2Ymc x (Z,Tb/r)l/2 as the target function with
a=b=3a =b = vy =1, ie. F(x) =2[r(x)/\(x)]*2. (Recall that r(x)
was the Euclidean distance to the depot, and A(x) the demand density.)

@ Two cases were considered: (a) uniform demand, where A = 1 and /*(x) =
2r(x)/2; and (b) declining demand, where A\(x) = r(x)~? and I*(x) =
2r(x)3/4. The following two slides show the results for four square regions
of sides L = 5,7,10 and 25 when the customer demand is homogeneous and
inhomogeneous, respectively.
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Solution for homogeneous customer demand
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Solution for inhomogeneous customer demand
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@ In the uniform demand case the difference between the CA cost prediction for
the variable costs —the integral 2.83(-2-)Y2(Z£1)1/4 over the service region

— and the variable costs arising from the design is quite small: 2.4% for L =
5,0.8% for L =7, 0.9% for L = 10, and 0.9% for L = 25.

@ In the variable demand case the cost differences are 2.6%, 2.3%, 1.6%, and
0.7% respectively. All these differences are exaggerations because they ignore
fixed costs, such as a“5e, which are large and can be predicted without error
by the CA method.

@ In all cases, the CA prediction was lower than the actual cost. This is not a
coincidence. The CA predictions for our examples should be lower bounds to
the optimum solution. Thus, the percentage differences we observed can be
interpreted as optimality gaps.
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@ Note that in both scenarios, and in agreement with theory, the accuracy of the
CA formulae and the efficiency of the proposed design method improves with
problem size considerably.

@ It means both, that the CA formulae describe well the optimum costs of large
complex problems, and that the CA discretization algorithm can complement
conventional optimization methods when they would have the most difficulty.
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Although the discretization procedure was illustrated with Euclidean metrics, it can
also be applied to other metrics by deforming the disks during the simulations, and
using true distances in the tessellation step. For example, designs for L; metrics
should use square “disks” with the same repulsive forces as before, and the L;
distance formula. An example is shown in next slide.
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Any questions?
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Readings

@ Daganzo. Logistics System Analysis. Ch.5.
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