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Introduction

@ We plan several lectures to address the physical distribution problems where
items produced at a single origin are to be taken, without transshipment,
to a set of scattered destinations over a service region R.

@ For the most part, we will focus on delivery problems, although it should be
recognized that collection problems from many sources to a single destination
are mathematically analogous.

@ The objective is to obtain simple guidelines for the design of a set of routes
and delivery schedules that will minimize the total cost per unit time.

@ The CA approach for the 1-1 problem will be extended to the 1-N problem;
yielding in the process simple formulae for the total resulting cost.
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@ The continuum approximation method is most accurate for one-dimensional
point location problems if the characteristics of the problem vary slowly
along the location domain (e.g., the time or distance line).

@ The current problem is much more complex. In addition to a schedule for every
customer, we must design a set of time varying routes to meet the schedule.

@ It can be reduced to a point location problem in multiple (time-space) dimen-
sions; accordingly, our solutions will be most accurate if the characteristics of
the problem vary slowly over both space and time. — K% ¥ B i & 49 7]
TR BA—AZHE (BT + 1) FagE Lk FM. Bm, XA L
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The scenario

@ A large number of destinations/customers N is distributed over a region R

@ The density function is a slow varying continuous function f{x) of the point
coordinates x = (x1,x) € R

That is, the actual number of points in a subregion of A = R, is approximately
given by:
J Nf(x)dx.
x€A
If f(x) remains nearly constant over a small A, then the number can be written as:
N J f(x)dx ~ Nf(x,)|A|.
x€A

where x, is any point in A, and |A| is the area of A.

Note that a design approach based on expressions of this type can be used even
before the actual point locations are known.
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The scenario (cont.)

@ In the literature, a common interpretation of f(x) is as a probability density
function for the coordinates of the customers, assumed to be located indepen-
dently of one another.

@ In that case, the above expressions represent the mean number of customers
found in subareas of R:

@ The actual number can vary across subareas with the same mean. The standard
deviation (SD) is {Nf(xo)|A|[1—f(x0)| A|]}*/?* when f(x) is nearly constant over
A and points are located independently.

@ The SD grows with N and A more slowly than the mean. These variations do
not prevent continuous approximations to improve as N grows.

@ Assume also that the cumulative number of items demanded by each customer
can be expressed as a demand curve D,(t)(n=1,2,..., N), which is assumed
to vary slowly with t
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Topics

Each topic may take one lecture.
@ Non-detailed vehicle routing problem

@ Customers with homogeneous demand: vehicles are filled to capacity at the
depot; vehicles are not filled to capacity at the depot; detailed solution from
the guidelines

@ Customers with heterogeneous demand: symmetric strategies extended from
previous discussions for the case that customers are identical; asymmetric
strategies

@ Integration with production process: adjustable production process without
penalty; relaxation to handle general problems
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Non-detailed Vehicle Routing Models

@ Given a set of delivery schedules for the customers in the region, one should use
the vehicle routes which minimize total distance traveled. The toal travel
distance the main determinant of transportation cost.

@ It is assumed that items are distributed with identical vehicles capable of car-
rying Vmax items. This definition of vehicle capacity can be used even if differ-
ent item types move through the system, simply by redefining the concept of
“item”.

o If the maximum freight volume (or weight) that can be carried by a vehicle
does not depend considerably on the mixture of item types making up its load,
one can think of an “item” as a unit of volume (or weight) and of vj,.x as the
vehicle's volume (or weight) capacity. Each destination can then be viewed
as a consumption center for packages of unit volume (or weight) — “items” —
containing an appropriate product mixture. % —#5 £ 4567 R K H B (K
BE) RRIRMT AT BN 6948 Ko, “TIAA — xR kAR (3K
E), Vmax AFMRERBERR (RBEE). HFNRRTNA L SH
KR BN P S,
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Vehicles are dispatched on service routes from the origin (depot) at times t1, t2, etc.,
on delivery runs to particular subsets of customers (possibly the entire set each
time).
@ Since vehicles are identical, an operating strategy can be defined relatively
easily. We seek the set t;, as well as the delivery lot sizes and the specific
customers served each “I" ; i.e., the delivery schedules for every customer.

o We also seek the routes that minimize transportation cost at each t;. Our
task is simplified because the combined length of all the routes is the main
determinant of cost, and simple route length formulas exist
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@ The cost of transportation on one vehicle route from one origin to several
destinations was approximately a linear function of the total size of the ship-
ment, #. stops and the total distance traveled (recall what we have learn
in the lecture on ‘Cost’).

@ If costs on all the vehicle routes are additive, the cost of serving all the desti-
nations for time t; should be the sum for the costs on each route; i.e., a linear
increasing function of the total #. routes (vehicles) used, the total volume
shipped, the total number of stops, and the total distance.

o For a given set of delivery schedules to each destination the total volume
shipped at each t; is obviously fixed. Thus, we only need to focus on #.
routes/vehicles, delivery stops, and vehicle-miles when seeking delivery
routes for time t,.
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@ We avoid customer load-splitting among vehicles < each destination is visited
by the minimum possible number of vehicles able to hold its delivery

o 1 vehicle if v < vinax items are to be delivered, and [v/vinax|T otherwise *

@ Although in some instances it may be possible to reduce the number of tours
and the distance traveled by splitting loads', the reductions are unlikely to be
significant in most cases.

@ Among all the possible strategies without load-splitting we prefer the one with
the least distance, as this strategy should also minimize the number of vehicle
routes.

o A set of routes which minimize total distance should use vehicles to the fullest
because fewer line-haul trips to and from the depot then need to be made.

*For customers receiving v > Vmax items, one would dispatch [v/vimax] ™ full vehicles exclusively
to the customer, and would consolidate the remaining items with smaller deliveries to other nearby
customers on a single vehicle route.

fsee problem 4.1
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@ Since a reasonable set of vehicle routes can be chosen on distance grounds
alone, the routes can be designed without knowing the magnitude of the
cost coefficients.

@ Focusing on the difficult case when v < vpax, the remainder of this lecture
discusses distance minimizing routing schemes and presents simple formulas
for estimating distance (and therefore transportation costs).

@ The results depend on the number of customers to be served at time t,
their spatial distribution in the region, and on the number of stops that
vehicles can make C = [Vmax/V|™

@ It is assumed that the lots carried to each customer are of similar size (a
reasonable assumption for the cases with identical customers discussed in the
first few sections of this chapter), so that Cis the same for all vehicles; in later
lectures, C will be allowed to vary.
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Many Vehicle Tours N/C>» C

@ In order not to introduce additional notation, we will use N to denote the
number of destinations that must be visited. If tours are not being constructed
for all the customers in the region, the results can be easily reinterpreted.

@ Vehicles should be used to the fullest — there should be at most one vehicle
that makes fewer than C stops, and none if N is an integer multiple of C.

@ Our strategies are of the “cluster-first and route-second” type, where the
service region is divided into non-overlapping zones of C customers, to be
served by separate vehicles. 2 %] % IR 4 X 3¢ B # %) #4542

@ For a given set of zones, the vehicle routes are easy to construct using some
simple rules. To minimize the total distance (and hence the cost), these zones
should have specific shapes and orientations, dictated by the relative magnitude
of Nand C? .
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Many Vehicle Tours(cont.)

@ Two cases need to be considered: (i) when the number of vehicle routes N/C
is much greater then the number of stops per route C, N » C?, and (ii) when
only a few vehicle routes are needed N « C2.

@ For case (i), delivery districts (or zones) should have a width comparable with
the distance between neighboring points and be as long as necessary to contain
C points; see Appendix A.

@ The formulas are most transparent when expressed in terms of the spatial point
density (#.points/unit area) evaluated at a point inside the delivery district,
x: 6(x) = Nfix)*. The factor §(x)~1/2, appearing in the formulas, represents
a distance close to the average separation between neighboring points
in the vicinity of x.

@ For randomly scattered points, it has been found that (see Appendix A)

zone width ~ (6/6)Y/2;  zone length ~ C/(6/5)"/?

*Because §(x) varies slowly, just like f(x), it does not matter which xis used
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@ These dimensions are close to ideal and relatively independent of the metric or
underlying network.

@ When § changes over R, district dimensions should also change over R, al-
though more slowly. As the solution to the EOQ problem, these expressions
are robust; departures from the ideal dimensions by 20-30% are largely incon-
sequential, but larger departures increase distance.

@ This robustness makes it easy to carve out R into delivery districts of satisfac-
tory dimensions
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@ Zones should also be oriented “toward the depot”, but the precise meaning of
this recipe depends on the underlying metric.

@ One should build equi-distance contours from the depot and design zones of
the right dimensions that are perpendicular to these contours.

@ For the Euclidian metric the contours are concentric circles centered at the
depot, so that the zones should fan out from the depot in the radial direction.

@ For the L; (or “Manhattan") metric, the contours are squares centered at the
depot, at 45° to the metric's preferred directions (S FE%& M %2 A H £ &
AR, GEEFE, B X,y HHem 45° kA8 —RFIEFHH) | in this
case the zones should be perpendicular to these contours, so that they don't
point exactly toward the depot. Ideal orientations can also be defined when
the network includes fast/cheap roads.
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@ Because the zones are narrow, it is easy to construct good vehicle routes, once
the region has been carved into delivery districts.

@ One simply needs to travel up one side of the zone, visiting the points in order
of increasing distance to the depot, and then return along the other side visiting
the remaining points in the reverse order.

@ The effectiveness of this routing scheme improves with the slenderness of
the zones — it is exact if zones are infinitely narrow.

;»+—»+—»+—w

Depot

e ——4d

Route in Lymetric in a zone
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Let us show how to partition a region into
delivery distances with proper shape and
orientation. We may draw delivery zones
around the region’s edge away from the de-
pot, and then filling in the remaining space
with more delivery routes, always proceeding
toward the depot.

The figure depicts an intermediate point of
this process for an irregular region with an in-
ternal depot and a rectangular grid network
—note how most districts are perpendicular
to the (square) equi-distance (L1) contours.

Districts

Depel T
N

Equidistance
lontours

As we progress toward the depot, it may become necessary to pack a few zones
with the “wrong” shape, but most will have the right dimensions and orientation.
Because the distance traveled is not overly sensitive to (small) deviations from the
ideal design, the distance formulas about to be developed should be accurate.
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The total distance traveled to visit the C points in a given zone containing point
Xo is:
tour distance ~ 27 + [kd~Y/2(x0)]C,

where 7 is the average distance from the C points to the depot (on the shortest
path) and k is a dimensionless constant that depends on the metric (k ~ 0.57 for
the Euclidean metric, and k ~ 0.82 for the L; metric). See Appendix A for more
details.

The first term can be interpreted as the line-haul distance needed to reach the
center of gravity of the points in the zone from the depot, and the second term
as a local distance that must be traveled because the points are not next to one
another. Note that each stop contributes toward the total a distance comparable
with the separation between neighboring points, k3—/?(xg). This occurs, because
the vehicle must be detoured on every leg between successive deliveries. % —371 2
N B A2 TR BB AN EREEMIES, H A TR L
BIRIRBIMIER . FMFEENEEB N 0L 5T LA FRIES.
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@ In actuality, because there are only C — 1 such legs, the factor “C" in the
previous slide should be replaced by “C — 1". Thus, a better expression is:

tour distance ~ 27 + [kd % (x0)](C — 1).

@ The improvement afforded by this expression, particularly obvious for C = 1,
fades in importance as C grows.

@ Because the previous equation is more compact, it will be used unless C is
small

BHHRBLRFE B#H Wik R %t LN RiEA% 23 / 207



BB B X

Let us now see how the total distance over R can be expressed without regard to
the detailed position of points, using a continuum approximation.

Distance can be prorated to each one of the points in the zone so that if point i
(located at x;) is r; distance units away from the depot, then:

2r; 2r; _
distance prorated to x; ~ % + [k67Y2(x0)] ~ % + [k67Y2(x7)]
where the second approximate equality follows from the slow varying property of
0(x).

The total distance traveled in the region is the sum of x; across all points:

. 2 —1/2
total distance ~ EZ ri + kZé (x;)
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For large N, the sum can be replaced by integrals independent of the specific location
of all the points:

“12(x) ~ 12(x)]dx, an ri~ | r(x)d(x)dx
S0~ [ 15 ko and S [ e

Thus

2
total distance ~ J [Er(x) + k672 (x)]6(x)dx.
R

Note that this expression is well suited for continuum approximations because the
cost in any given (small) area only depends on the local conditions
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Alternative Expression

An alternative expression for the total distance is obtained after replacing d(x)dx
by Nf(x)dx, it then becomes clear that these expressions can be interpreted as the
product of N and the expectation of r(x) or §~/2(x), when the probability density
of position is f(x). Thus, letting E(r) and E(6—'/?) denote these expectations, the
total distance can be expressed as:

26()

=t KE(6Y/2))].

total distance ~ N[

For a uniform density, E(6~%2) = 6=1/2 = \/IR|/N and we can write:

2E|
total distance ~ N[ C(r) + kv/|R|/N].

where |R| denotes the surface area of R.
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Interpretation

@ Independent of the specific locations, these equations are particularly useful if
cost must be estimated before the point locations are known. In that instance,
it may be reasonable to view the actual locations (xi, ..., xy) as outcomes of
i.i.d random variables with density f(x), and interpret the following equation
as the average total distance over all possible locations (xi,. .., xy)

2E()

= KE(6~Y/2)].

total distance ~ N[
@ In any specific instance there will be some discrepancy between the equation
and the actual distance — for large N most of the difference typically will
arise from fluctuations in 3, r;, which are of order O(NY/2) and comparable to
the second term. If more accuracy is desired, one should wait for the point
locations to become known. Comparisons made in Hall et. al. (1994) indicate
that the approximation formulas just presented are fairly accurate even if the
number of stops is not the same for all tours.
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Few Vehicle Tours N/C « C

e If  » N, the optimal strategy must be different from the one we just explained
because zones of ideal length (approximately (6/6)1/2 would be too long to fit
in the service region.

@ It is not too difficult to design a partition of the region that will yield a distance
close to a lower bound for the optimum; i.e., a near-optimal partition.

@ The lower bound is the distance for the shortest single tour visiting all
the points, beginning and ending at the depot — the “traveling salesman
problem™” (TSP) tour. Before describing the partitioning strategy, we must
learn some basic properties of TSP tours with many points.
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Few Vehicle Tours N/C « C (cont.)

If a region with a nearly constant density of points is partitioned into a few subre-
gions with many points each, then the length of the shortest tour in the region is
close to the sum of the optimal subregional tours.

@ a grand tour can be constructed by connecting the optimal tours of the sub-
regions with a few new legs, while at the same time deleting a like number of
existing legs — F &N F R R4 R nfR@EE T BA248%, FaM &
5T HAE, Bp T RAT— AN PTR B 6 R

@ subregional tours can be constructed from a grand optimal single tour, by
connecting the broken sections of the grand tour within each subregion with
legs along its boundary.— 5 i i A & 69 2 A R AR P F it & F K 349
oty B EARAR I, Bp T KA AT XA RAR

In both cases, the original (optimal) and modified (suboptimal) tours differ in total
length by no more than the combined perimeter of all the subregions, which is
a relatively small quantity when the number of points is large. Thus, the optimal
grand tour should be just about as long as all the optimal subregional tours com-

bined.
*Karp, 1977, and Eilon et al. 1971. See Appendix A for @ simple proof.
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Few Vehicle Tours N/C « C (cont.)

@ This property suggests that if the density of points is constant, then the TSP
tour for a subregion 1/4th the region’s size (with 1/4th the points) should
be about four times shorter; that is, the average distance per point should be
roughly constant. Since the only distance parameter of the problem is 6 /2,
the distance per point for large N must be of the form: K62, where K is
a dimensionless constant, independent of region shape but dependent on the
metric; K is believed to be about 0.75 for the Euclidean metric with randomly
distributed points.

@ The expression also holds, with a different K, for regular arrangements of
points. Note that the total tour distance can be expressed as: kK'/N|R)|.
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@ In light of the TSP tour partitioning property, it should not matter much how
the region is partitioned for the vehicle routing problem (VRP), provided that
travel external to the districts is avoided by ensuring that every zone touches
the depot.

@ In that case each VRP tour will be similar to the TSP in the district (the TSP
may not have to visit the depot), and the combined VRP length should be close
to the overall TSP length; i.e., the lower bound. This means that traditional
“sweep"-type algorithms for the VRP, which result in wedge shaped districts
as we desire, should work well for the case with N « C2.
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@ Alternatively one can build a TSP for the whole region, R, and partition it into
segments of C points each that would be connected to the depot.

@ The length of these segments is negligible compared to the total (if N « C?),
so that the length of all the tours should be close to the length of a TSP.

@ In either case, the length of all tours is close to the TSP lower bound. If the
density is constant, we can write:

total distance ~ K N6~ /2 = K+/N|R)|.

BHHRBLRFE B#H Wik R %t LN RiEA% 33 /207



norm”.

34 / 207

) that block travel in the longitudinal direction

AT i 81

(

s\a

it

\\_s\\\s—-{\ss\““\\ ,
ity 1777
//f

i

WA ARG 1-N BiE R %

System with blockages

@ As an aside we note that these equation, which rest on partitioning properties

of TSP and VRP tours, may need to be modified for systems in which the

distance metric cannot be used to define a

@ An example of such a metric is a rectangular warehouse with a system of

transversal aisles

(H &) , except along the sides of the rectangle.
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System with blockages (cont.)

@ For this type of system the length of a tour in which all the aisles with one or
more service points are traversed in succession is (Kunder and Gudeus, 1975):

total distance ~ 2y; + ay»

where y; and y» are the longitudinal and transversal dimensions of the rect-
angle, and a is the number of aisles containing a point. yi,y> 4% & Y\ & F=
e RKE, a @& FHFZ7 P 8@ E A

o If Nis so large that each aisle contains many points it should be clear that: (i)
the traversal strategy becomes optimal and (ii) the coefficient a of the above
expression can be replaced by the number of aisles.

*This shows that the above expression is not of the form since both its terms are independent
of N for N — 0.
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@ We now return to the (usual) cases where the TSP/VRP formula can be ap-
plied, and note that for slow-varying nonuniform densities this distance expres-
sion can be approximated by the sum of expected TSP lengths over subregions
with many points and (nearly) constant density. In integral form this is:

total distance ~ K NE(67/?).

where E(éfl/z) is defined previously. The uniform density is proofed to maxi-
mize the total distance; thus K'v/N|R] is an upper bound to K NE(6~1/?).

@ Notice that, unlike the many tour case, these equations are independent of
G, i.e., if vehicles make so many stops that zones of ideal length cannot be

packed in the service region, then travel distance is not decreased appreciably
by increasing C.
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@ The vehicle routes within the wedge shaped zones are more difficult to develop
in this case than in the previous one, which should not be surprising since the
TSP problem is NP-hard.

@ Nonetheless, simple algorithms such as the ones described in Daganzo (1984a)
and Platzman and Bartholdi (1989) can yield tours within 20% of optimality.
Simple fine-tuning corrections (see Newell and Daganzo, 1986) can then reduce
its length by another 10 or 15%. Other fine-tuning approaches can yield tours
even closer to optimality (see Robusté et al. 1990).

@ |t is not our purpose to describe here existing tour construction methods, since
this is of marginal value for the theories that will follow. Suffice it to say that,
in practice, it is possible to obtain tours within a few percent of optimality
with an effort that only grows proportionately with the number of points to be
visited.
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@ Now return to the one-to-many problem with identical customers.

@ Recall that we are seeking the set of delivery schedules for each customer
and that, given the schedules, the transportation cost at each t; can be easily
estimated with the results that have just been presented.

@ The chosen schedule should strike the best balance between transportation and
holding costs
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@ We first consider strategies where the loads carried by each vehicle are given.
Since one would then operate the smallest possible vehicles able to carry the
loads, we will denote by viax the load size used.

o Given D,(t) = D(t) for tin [0, tmax]. We seek the dispatching times {t;: / =
0,...,L} and vehicle routes which minimize the total logistics cost. We let
to =0and t; < t)11.

@ Because all the customers are alike, there is no compelling reason to treat
some differently from others, and we shall assume that every customer is visited
with every dispatch |. Under these conditions, the search for the t; is facilitated
considerably because, the transportation cost only depends on the number
of dispatches, L.
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Decomposition

@ We now show that for a given number of dispatches L, the total transportation
cost between t = 0 and t = tnax is independent of the headways: H, =
t— tlfl(/: 1,...,L).

@ We have already stated that the transportation cost for a given /is a linear
function of # routes, # delivery stops, # items carried and the total distance.

@ Clearly, the combined cost for all / must also be a function of these four
descriptors. Because vehicles travel full, three of these (the total number of
items D(ty.x) N, the number of vehicle tours D(tyax)N/Vmax, and the total
number of delivery stops L) are fixed; they do not depend on when or how
much is shipped at each t,.
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Total combined transportation cost

For a given L, the total combined distance for all dispatches is also independent of
the t,.

@ As indicated by the VRP formula, it is the sum of a local distance term pro-
portional to the total number of stops made NL, kLNE(§~%?), and a line-
haul component which is proportional to the (fixed) number of vehicle tours:
2E(r) x #tours = 2E(r)D(tmax)N/Vmax- Note that the line-haul component is
independent of L

@ With the cost coefficients, the total transportation cost combined between
t =0 and t = tyax is approximately:

D(tmax _ D(tmax)N

csN{ (V =) + L} + cqkLNE(§7Y?) + cd2E(r)(‘/73) + &.D(tmax) N,
max max

which only depends on one decision variable, L

@ An expression based on few tour formula instead of the many tour one would
be quite similar, and also independent of the {t}.

*¢s the stop cost; ¢y vehicle cost for each mile traveled; ¢ added cost of carrying an extra item
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Total combined transportation cost (cont.)

D(tmax) N

Vmax

+ D (tmax) N,

CSN{ D‘(/t’"“) + L} + cakLNE(6™Y2) + cs2E(r)
max

o Mk L KR, HABRENE | S AMELSANERERR. FEHME
A BT Vimax, 12LFT7 9 AR E EH A . X33 local distance #9
FNIE

@ The formula holds regardless of how many items are included in each shipping
period F—even if customer lot sizes are greater than V..

@ It holds in particular if one decides to ship larger quantities than necessary
in anticipation of future increases in the demand curves. This has a profound
implication for inventory control. Given a number of shipments L to be received
by a customer, their sizes and timing can be chosen to minimize holding cost
without affecting the transportation cost.
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@ !Identical Customers and Fixed Vehicle Loads
@ Very cheap items: ¢; < ¢,
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Very cheap items: ¢; < ¢,

P B | T A AR T ALY PR B B AR R T
o We examine first a case where items are so cheap (c; is small) that most of
the holding cost arises because of the rent paid to hold the items, ¢, ~ ¢,

@ In future lectures, with more expensive items and different customer types,
the CA approach will be used to solve this problem. This is not possible now
because, since the rent cost is a function of the maximum inventory held, said
cost cannot be prorated to (small) time intervals based only on the inventories
held at those times.

@ Fortunately, for a given L the transportation cost is fixed, and the headways only
influence the rent cost. Clearly, the headway selection problem is analogous to
that examined in the 1-to-1 distribution problem. -> AR FRRHNT, By
A B RAE, B AU AT R AT BB

*cr rent cost per item-year; ¢; wait cost per item-unit time
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Very cheap items: ¢; « ¢, (cont.)

@ We saw in the lot size problem with variable demand that holding cost is
minimized if all shipments are just large enough to run out before the
next delivery

o If rent costs were the dominant holding costs (so that the rent cost was pro-
portional to the maximum lot size), then one should choose the dispatching
times so as to minimize the maximum lot size —All the lot sizes should be
equal, and given by D(tmax)/L.

@ The same occurs here. The minimum holding cost (for L dispatching periods)
is thus:

D(tmax)

Combined holding cost = N[ T

] Crtmax
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Optimal # of dispatching times

@ The total combined logistic cost consists

D(tmax) ( tmax)

Vmax

D(tmax
g + C;D(tmax)N

N[

combined holding cost combined transportation cost

Jertmax  + c. N{ L}+chLNE( T2y 4 cg2E(n)

@ The optimal number of dispatching times L should be chosen by minimizing
such a sum. Only the first and second terms of the transportation cost capture
the local stop cost and the local distance cost and depend on L. The other
terms, corresponding to the line-haul travel and the loading/handling cost do
not.

@ Thus, the optimal L* is the solution of an integer constrained EOQ equation
that balances the local transportation cost and the rent cost; the solution is
close to:

rtmaxD tmax 1/2
L* & [C—i—/d_'-_((él/)Q)] , if L is greater than 1.
Cs + Cq -

EFEHA 107 TAX (4.9) AR
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Optimal total combined cost/item

The total combined cost per item is approximated by:

Cs + 2¢cqE(r) s+ cdk_E(5—1/2) 2

+ .+ 2[c,

Vmax

where we use [ for the average demand rate per customer, D(tmax)/tmax. Remark-
ably, the optimal cost does not depend on the shape of D(t). Not many details are
needed to provide a reasonable estimate of operating cost.
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@ !Identical Customers and Fixed Vehicle Loads

@ More expensive items: ¢; » ¢,
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More expensive items: ¢; » ¢,

@ We now discuss the problems for items so expensive per unit volume that most
of the holding cost is inventory cost. Our lectures on lot size problem
showed how a CA approach could be used to locate points on the time line
(the delivery times) in order to minimize approximately the sum of the holding
and motion costs

@ The latter was modeled by a constant cr that represented the added cost of

each dispatch. Reasonable for the one-to-one problem examined at the time,
this simple formulation also applies now

@ From the equation of the combined transportation cost, we notice that with
each additional dispatch, the transportation cost still increases by a constant

amount (& L KF)
cr~ [cs + cakE(3TY?)N.

This constant represents the local transportation cost induced by the N ad-
ditional customer visits resulting from the extra dispatch. The line-haul cost
remains unchanged.
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More expensive items: ¢; » ¢, (cont.)

o Consequently, the results and methods of the lot size problem for the EOQ
with variable demand also apply here if one defines cf ~ [cs + cgkE(6~Y/?)|N
and replaces D(t) by ND(t). The CA formulation for 1-to-1 problems can then
be used to estimate cost. Don't forget to add the (large) fixed components of
combined transportation cost that do not depend on L

@ Once the dispatch times {t/} and the corresponding delivery lot sizes {v;} have
been determined, the vehicle routes can be designed as described in the non-
detailed VRP, recognizing that the number of stops per vehicle (C = nl ~
Vmax/Vi) changes with /.
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More expensive items: ¢; » ¢, (cont.)

@ For the special case with uniform density and constant demand, the cost for-
mula reduces to a form analogous to formula for cheap goods, with ¢;, D' and
(|R|/N)*/? substituted for c,, D’ and E(6-1/?)*.

@ This approach has been used to streamline General Motors' finished product
distribution procedures. The results have been compared with those of (less
efficient) direct shipping strategies!.

*Burns et al. 1985
TGallego and Simchi-Levy, 1988
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@ !Identical Customers and Fixed Vehicle Loads

@ Inventory at the origin
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Inventory at the origin

@ The theory we have described focused on the holding cost at the destination
and used cost expressions as if there were an equivalent cost at the origin.

@ This assumption is reasonable for the 1-to-1 problems and is now shown also
to be reasonable if the one-to-many system is operated as we described.

@ However, a modification to the operating procedure can drastically reduce the
origin holding costs.
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@ With our dispatching strategy, where all the destinations are served with each /,
the number of items accumulated at the origin reaches a maximum immediately
before a dispatch, and at the destinations immediately after a reception.

o If production is flexible, one will produce by dispatch / only those items that
must be sent by time t; (and no more) ; thus, the maximum accumulation at

the origin is the size of the largest shipment received by any customer, times
N.

@ Because shipments arrive as supplies run out, this is also the maximum ac-
cumulation for all the customers. It is thus reasonable to represent rent cost
by the product of a constant, ¢,, and the maximum accumulation, as we have
done.
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@ Inventory costs are slightly different. If one could produce the items as fast
as desired, one would produce item during a short time interval prior to t; for
each combined shipment /; and would therefore avoid inventory costs at the
origin. This is not likely to happen, however.

@ Although the production rate can change with time to satisfy a slow varying
demand D(t), items are normally produced at a roughly uniform rate during
each inter-dispatch interval, since most production processes benefit from a
smooth production curve.

@ Thus, inventory costs should not be reduced in this manner. If some destina-
tions request more expensive items than others, then inventory cost may be
reduced without altering the production rate, simply by changing the order of
production. One might want to produce the cheap items at the beginning of
the inter-dispatch interval and the most expensive at the end.
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@ In most cases, however, only a fraction of the inventory cost at the origin could
be saved by exploiting these differences.

@ Thus, the waiting cost at the origin should be comparable to the waiting cost
at the destinations, and a strategy which assumes that both holding costs are
equal should yield costs close to one which recognizes the inventory cost at
the origin more accurately

e Remember that an error in a cost parameter by a factor of 2 only increases the
resulting EOQ cost by about 10%.
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Staggering production for delivery regions ( 3 %8 & = 5K #&)

@ With our operating strategy, all the points in the region R are visited at each
instant /.

@ However, if instead of waiting for time t;, vehicles are dispatched just as soon
as their last item is produced, both the storage room and the inventory cost
at the origin may be reduced. As shown below, this reduction is largest if one
can produce all the items for each one of the delivery districts, in sequence.
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o If the delivery times to any customer are shifted by a time At; smaller than
one headway (i.e., the new delivery times are t; = t; — At; > t;_1), and if At
changes slowly with / so that the new headways are close to the old, then the
total holding cost does not change appreciably.

o With a slow varying D(t), the maximum accumulation remains virtually un-
changed, and so does the total number of items-hours; see the difference
between the solid and dotted R(t) curves.

@ This is consistent with the CA solution; the cost is sensitive to the delivery
headways used as a function of time but much less so to the specific dispatching
times.
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Suppose that we label the tours used for the lth shipment: j= 1,2 3, etc.

Assume that items for destinations in tour j = 1 are produced first, items for
destinations in j = 2 second, etc; and assume as well that every tour is started
as soon as the orders for its customers have been completed.

If the delivery districts do not change with every /, it would be possible to
label them consistently so that all destinations would have the same label in
successive dispatches. This would ensure that the /th delivery headway to
every customer is close to (t;;1 — t;), and that as a result the holding cost at
all the destinations would remain essentially unchanged.

The ordered production schedule, though, would cut the maximum and average
inventory at the origin by a factor equal to the number of tours used for the
th shipment, drastically reducing holding costs at the origin.
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Unless the demand is constant, D(t) = At+ constant, it is not reasonable to assume
that all the delivery districts remain the same; in that case a less ambitious version
of our staggered production schedule can be employed.

@ The service region can be partitioned into production subregions Py, P,, ..., Pp,
where P is a number small compared with the number of tours in any /, but
significantly larger than 1 (so that it can make a difference.)

@ Each production subregion should contain the same number of customers (i.e.,
the same total demand) and require at least several tours to be covered. Under
such conditions, the distance for covering R with a VRP is not much different
from the collective distance of separate VRP's to cover Py, P, etc.

@ This is true because, like the TSP, the VRP exhibits a partitioning property.
(This should be obvious, since: (i) the cost in each subregion is the sum of the
costs prorated to each of its points, and (ii) the cost per point is independent
of the partition).
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The following strategy cuts inventories at the origin by a factor P, while preserving
virtually unchanged the motion and holding costs at the destination:

@ produce the items for any shipment in order of production subregion: P; first,
then P, etc

@ On completing production for a subregion, Pp, dispatch the vehicles to the
subregion on VRP routes constructed for the subregion alone
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@ As a practical matter, P does not need to be very large; once it reaches
a moderate value (say P & 5) additional increases yield decreasingly small
benefits.

@ In fact, even if the demand was perfectly constant, it is unlikely that one would
choose a P much larger than 5 because larger P’s imply shorter production runs
within each P, which hinders our ability to sequence the production to meet
other objectives, such as operating with smoothing worker loads and materials
requirements. P #) KR 2T L @a R E T RBAZHRNGRE, doF
R R T I ZRE AR R P AKX, £ 5 TARBRE, Lmr
AT A5
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o If production schedules are staggered as described, then the search for the
optimal dispatching times should recognize that holding costs will be lower.

@ The analysis could be repeated with a changed holding cost equation (e.g.,
combined holding cost = NWQL‘MX for the case ¢, » ¢;) but this is un-
necessary; a suitable (downward) adjustment to the holding cost coefficient,

either ¢; or ¢,, has the same effect and also preserves our results.

@ If holding costs at the origin can be neglected, the coefficient should be halved;
of course, there is no need to pinpoint its value very precisely, since the solution
to our problem is robust to errors in the cost coefficients.
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@ In every case discussed so far, the total cost expression decreases with the
vehicle load carried vmax < the larger vimax the smaller the total number of
vehicles that need to be dispatched. — In any practical, one would be well
advised to use vehicles as large as the (highway, railway ...) network would
allow.

@ However, the analysis ignored pipeline inventory cost and did not consider
possible route length restrictions. With either one of these complications, it
may not always be desirable (or possible) to dispatch full vehicles all the time;
vehicle load size becomes a decision variable.
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@ We will discuss route length restrictions first, and will then incorporate pipeline
inventory into the models.

@ It will be shown that pipeline inventory cost can be ignored for freight that
is neither perishable nor extremely valuable, and that it cannot be ignored for
passengers.

@ Were it not for this complication, the results for fixed vehicle load problems
could be used for 1-to-N passenger logistics (e.g., to design a commuter rail
network serving a CBD).

@ We concludes with a discussion of restrictions on the delivery lot size.
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@ Identical Customers and Vehicle Loads Not Given
o Limits to Route Length
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Limits to Route Length

o If the optimization of the identical customer problem results in very small
delivery lot sizes, each vehicle may have to make an unreasonably large
number of stops.

@ Very long routes may not be feasible if there are restrictions to the duration of
a vehicle tour. For example, due to labor regulations

@ We may explore the consequences of such restrictions

70 / 207
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Limits to route length (cont.)

@ Tour duration limitations essentially impose a location-dependent limit on
the number of stops.

@ Presumably, locations distant from the depot will need to be served with fewer
stops than those which are nearer since more time is needed to reach their
general vicinity.

o To recognize this dependence, we use Cpax(x) for the maximum number of
stops around x; we assume that Cpax(x) varies slowly with x
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Limits to route length (cont.)

@ Assume first that N is large, so that most delivery districts do not reach all
the way to the depot. Then, to minimize distance one should still attempt to
design delivery districts of width [6/5(x)]'/?, while making them long enough
to include a desired number of stops at (or near) coordinate x, ns(x) < Cpax(X).
This yields: length = ny(x)/[66(x)]"/2. The total distance is then given by
expressions

Total distance ~ [Z n— + k37YV2(x;)]
i s,i

~ 2NE(—) + kNE(5Y/2)

Ns

where n, ; denotes the number of stops per tour used for tours near x;;

e if ns(x) = C, it coincides precisely with previous expressions. Although the
line-haul distance component (the first term) is somewhat different if ng(x)
varies with x, the local component remains unchanged.
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Total distance with restrictions on the route length (cont.)

Total distance = 2NE(—) + kNE(62/2)

ns
This expression decreases with ns; — # stops per tour should be made as large as
practicable.

For our problem, # stops used near location x on the /-th dispatch, nl(x), should
satisfy:

nl(x) = min{ Crax(X); Vimax/ i},
where v, denotes the delivery lot size used for period /. The expression indicates that
the vehicle either reaches its route length constraint, or else is filled to capacity.
BEMETOHANALR: B x LAFGRKE, B
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Dependence on the specific headways?

@ With this restriction some of the tours may carry less than a full load. As a
result, it may appear that neither the total number of vehicle tours nor the
line-haul transportation cost (Ki&i& 449 JE & % 2NE(;-)) are fixed.

@ We shows that, while not fixed, the number of tours (and thus the sum of the
line-haul and stop costs) can sometimes be approximated by an expression
that only depends on the number of headways L; then, the scheduling and
routing decisions can still be decomposed.
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Approximation for the number of tours

@ Assume that R can be partitioned into just a few subregions, P,, with the
same limitation on the number of stops: ng(x) < Cnax(x) & C,. Characterize
each subregion by the number of destinations N, and their average distance
to the depot E(rp).

@ We will show that the number of tours in each subregion only depends on L.
As a result, an expression for the total number of tours is developed.

@ The number of tours in period / for subregion p is:

N N,
{# tours;/, p} = max{ pYI. P} 7

;
Vmax Cp

and for all periods:

L L
{# tours;p}:NpZmaX{ 7 ;é}?Npmax{E vi .L}
I=1 P

Vmax = Vmax Cp
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@ This inequality is a good approximation for the number of tours if rent costs
dominate, as then the delivery lot size should be independent of .

@ The approximation will also be good, for the same reason, if the demand is
nearly stationary. Then, we can write:

{# tOUI’S;p} = Np max [D<tmax) : L] — Np { D(tmax) + max [07 L— Lp]}

Vmax Cp Vmax

where L, = C,D(tmax)/Vimax-

@ L[, represents a critical number of dispatching periods for subregion p. If
L > L,, then the lot sizes are so small that the vehicle cannot be filled in
subregion p; the number of stops constraint is binding. L A&k, &57&®H K
BeiZ if e 8] R = £ 09 & K FA); W REMH AR, NWHFGREHL2FEF
%, WEHTREE X RKIES RA.

T, RFHMAE p RERATAEIR 449 BLiZ R 2006 AL
-
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Total transportation cost

o If the equation is a good approximation for # tours used in P,, then the sum
of the origin stop cost plus the line-haul cost for all tours is:

P
Z {# tours; p}[cs + 2¢c4E(rp)]
p=1
P
- M/\/[cs + 2¢4E(r) Z Cs + 2¢4E(rp)] [Npmax (o, Lo L")]

Vmax Cp

which only depends on the dispatching times through L.

@ For small L the expression is constant, and matches the sum of the 1st and
3rd term of the total combined transportation cost. But once L exceeds some
of the L, (some tours hit the length constraint and are only partially filled), it
increases with L at an increasing rate.

TRecall the expression for combined transportation cost: csN{Dsti":’X) + L} + cgkLNE(5—1/2) +

ca2E(r) 2N 4 o Dt )N 0 KA T i8R 8 % — 0 (e L35 o 6 200
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Find the optimal dispatching time L

@ The optimal L can be found still as a trade-off between inventory cost* and
transportation cost!, with the first and third terms revised.

@ Because the revised combined transportation cost equation is piecewise linear
and convex, the sum of the inventory cost and transportation cost has only one
local/global minima. The revised derivative of total combined transportation
cost with respect to L is now a step function:

N
[cs + cdkE(5_1/2)] N+ Z ?P [2¢4E(rp) + ¢ ,
L,<L P

where the summation only includes p's for which L, < L. The second term
represents the cost increase for the extra tours that need to be sent
because (some) vehicles cannot be filled to capacity. The first term
keeps unchanged.

*Recall the expression for combined holding cost: N[W]crtma><

TRecall the expression for combined transportation cost: csN{M +L}+ cdkLNE(6_1/2) +
max
cg2E(r) 2m2 N ¢ Dty )N
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Find the optimal dispatching time L (cont.)

[cs + cdkE(5*1/2)] N+ Z % [2¢cq4E(rp) + ¢,
L,<L P

@ In the special case where C,, is the same (Cnax) for all points, there is only one
subregion, with L; = CrpaxD(tmax)/Vmax and Ny = N. Therefore, the second
term is zero if L < GCuaxD(tmax)/Vmax, and equals (N/GCuax)(2¢cqE(r) + ¢5)
otherwise.

@ The optimal L can be found as follows: If there is a value of L for which the
sum of this equation and the derivative of combined holding cost equals zero,
then that value is optimal; otherwise, the optimal value is the L, for which the
sum changes sign.

@ Because the derivative is larger than before, the optimal L will tend to be
smaller and the resulting cost greater. This is intuitive; with limits to route
length it may be advisable to increase the lot sizes (by reducing L) to make
sure that most of the vehicles travel full.
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@ Our results assume that all customers share the same L and v;. Although this
simplification facilitates production scheduling, it may also increase logistics
costs when C, changes significantly across subregions.

o If a different L can be used for different subregions, then fewer dispatching
intervals and larger delivery lot sizes can be used for subregions with a low
Cp; all the vehicles can be filled as a result. A strategy (a set of dispatching
times and delivery districts) can then be tailored to each one of the subregions
independently of the others. xFF C, R348 R3K, THEAFERKLH
R g BLik Rk Cp Mol BT XK p A7 9] 69 R R B AN, T AR
i AR BLIE IR R A3 KB B4R TR 592 R 09 A K o

o We will explore this point — the determination of routing/dispatching strate-
gies that vary in time and space —more thoroughly in the following talks.
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Route length restriction for few vehicle tours

@ To conclude our discussion on route length restrictions, we must consider the
case with few vehicle tours, N « C?

@ Very simple. The transportation cost is insensitive to # stops per vehicle for
this case.

@ Hence, route length restrictions do not influence either the optimal dispatching
strategy or the final cost.
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@ Identical Customers and Vehicle Loads Not Given

@ Accounting for Pipeline Inventory Cost
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Accounting for Pipeline Inventory Cost

@ In all the optimization problems described so far we have found a solution
which minimizes the sum of the motion cost, the holding (rent) cost and the
stationary inventory cost. We did not consider the pipeline inventory cost of
the items in the vehicles.

@ Recall that the pipeline inventory cost/item was ¢;t,,, where t,, is the average
time an item spends inside a vehicle.

@ On average an item spends in a vehicle a time approximately equal to one-half
of the duration of the tour. If the vehicle travels at a speed s, and takes t;
time units per stop, the duration of a tour with ng stops and d distance units
long is d/s+ (ns + 1)ts; thus:

~

tm A

1 d 1
d/s +(ns+ Dts|, and city &~ ¢ x — + Zcits(ns + 1)
g (| 2 s 2

N =

i B A (e Aot
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Compositions of the pipeline inventory cost

@ Added for all items for all L shipping periods, the pipeline inventory cost be-
comes approximately a simple function of the total number of (item-miles),
(items) and (item-stops):

o Gt
= x # item-miles + f X # items + ¢jts X # item-stops
s

@ The total number of items is D(tmax)N. The total number of item-miles and
item-stops can be obtained easily if there are no route length restrictions.

@ In that case vehicles travel full (from the depot) and every stop delays on
average Vmax/2 items; therefore, the total number of item-stops is NLviax/2.
Similarly, each vehicle carries on average vinax/2 items and the item-miles equal
the product of the vehicle-miles and (Vmax/2).
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Compositions of the pipeline inventory cost (cont.)

@ We have already seen that the total vehicle-miles are (recall the derivation for
the total combined distance):

2E(r)D(tmax) N
Vmax

+ kNLE(67Y/?)

@ Thus, the pipeline inventory cost can also be expressed as a function of the
decision variables through L alone:

[c,-E(r)Ds(tmax)N] N [c,-QKSN

Cits
2

E(5_1/2)vmax} L+ “22[D(tmax) N + NVimaxL]

XA AT R A, RN item-mile’ BUE,

T2 &i® K 116 T ‘total combined distance’ 2 X A i%.
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it
Czs [D(tmax)N + NvimaxL]

CiE(r)D(tmax)N ;KN _1/2
E(0%) Vimax L
s +[ 2% (6 )V a ] +
@ As a function of L, this expression is similar to the equation for transportation
cost*, but it increases much more slowly: at a rate N[c,-vmax/2][ts+kE(5*1/2)/s]
as opposed to N[cs + CdkE(5’1/2)]

@ Normally, the quantity cjvinaxts represents the cost of delay to the items in a
full vehicle during a stop. It should be several orders of magnitude smaller
than ¢ (the truck cost and driver wages during the stop).

o Likewise, the quantity c;Vmax/s represents the inventory cost of a full truck per
unit distance. It should be much smaller than ¢, (the vehicle operating cost
per unit distance, including driver wages).

@ Thus, if pipeline inventory costs had been considered from the beginning, the
results would not have changed.

*Recall the expression for combined transportation cost: csN{M +L}+ cdkLNE((S—l/?) +

ca2E(r) RUmedN o 0 D40 )N
max
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o If the items are so expensive that the pipeline inventory component cannot
be neglected, then the pipeline inventory cost, unlike the transportation
cost, increases with v, ..

@ One could thus imagine a situation where a v, smaller than the maximum
possible might be advantageous; the vehicle loads cannot be assumed to be
known. The transportation of people is a case in point, where the inventory
cost of the items carried (the passengers) vastly exceeds the operating cost.

@ That is why airport limousine services do not distribute people from an airport
to the hotels in the outlying suburbs in large buses; this would result in un-
acceptably large routes, with some passengers spending too much time in the
vehicle *. 3% ALF IR G5 A 4+ 2 AL A R 5 F B & AL 32 3] i AR 69 & A
FAE? AR SMATRROG AR TR, HoRELAFLLENHTKS .

*See Banks, et al. 1982, for a discussion
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Re-examine the total transportation cost

@ Let us now see how to select the routes and schedules for a system carrying
items so valuable that vehicle loads are not necessarily maximal.

@ Without an exogenous vehicle load, the total transportation cost no longer can
be expressed as a function of L alone; the total vehicle-miles and the number of
tours depend on the specific vehicle-loads used, and this has to be recognized
in the optimization.

@ To cope with this complication, we will consider a set of strategies more general
than the ones just examined, but will analyze them less accurately.
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Headway

@ We will now allow different parts of R to be served with different delivery
headways at the same time. To do this, we define the smooth and slow

varying function H(t, x), which represents the headways one would like to use
for destinations near x at times close to t.

@ Until now we had assumed that the headways were only a function of t:
H(t,x) = H(t). As a result, the optimal dispatching times {t;} could be found
with the exact numerical techniques; or if D(t) was slow varying, with the CA
approach.
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# stops per tour

@ For the present analysis we also seek a function ns(t, x) which indicates the
number of stops made by tours near x at a time close to t. Of course, this
number cannot be so great that the vehicle capacity is exceeded; the following

must be satisfied:
{ns(t, x) D' (t) }H(t, X) < Vinax,

@ The quantity in braces represents the combined demand rate at the ng destina-
tions visited by a tour, and the left side of the inequality the load size carried
by the vehicle.

@ The approach we had used assumed that this equation was a pure equality, so
that ng was only a function of t, ng(t) = vimax/[H(t)D'(t)], implicitly given by
H(t).

o Like H(t, x), the function ng(t, x) will be allowed to be continuous and slow-
varying during the optimization.
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Decision variables

@ Once H(t,x) and ns(t,x) have been identified, a set of delivery districts and
dispatching times consistent with these functions must be found. This will be
illustrated after the optimization has been described.

@ Let us write the total logistics cost per item that items at time-space point
(t, x) would have to pay if the parameters of the problem were the same at all
other times and locations, i.e., D'(t) = D/, 6(x) = 4, and r(x) = r.

@ The decision variables H and ng that minimize such an objective function will
become the sought solution, varying continuously with t and x (H(t, x) and
ns(t, x)).
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Total motion cost per item

@ The minimum value of the objective function for these coordinates z(t, x), is
the CA cost estimate.

o Noticing that a vehicle load consists of D'ngH items and a delivery lot of D'H
items, we can express the total motion cost per item as:

1
+ c..

2rcy _1p 1 1
_ V2= 4 4
DnH oH T “DH T “DnH

Zm

@ Recall the expression for combined transportation (motion) cost: CSN[M +

‘max

L] + cakLNE(6™Y2) + cq2E(r) 2N o o Dt )N. We may obtain z, by

simply putting Viax = D'ngH, DH= D(tmax)/L in the expression and dividing
it by D(tmax)N.
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Physical interpretation

2rey L, 1 1 1
- SR SN S
= D H DH DR T “DnH TS

This expression has an intuitive physical interpretation.

e Each tour incurs a cost (2rcy + ¢;) for overcoming the line-haul distance and
stopping at the origin, which prorated to all the items in the vehicle yields the
first and fourth terms.

o The tour also incurs a cost (cgkd /2 + ;) for each local stop and detour,
which prorated to the items in a delivery lot, yields the second and third terms
of the expression.

@ The last term is the (constant) cost of handling each item.
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Physical interpretation (cont.)

2rcy 1 1 1
Zm = + cgkd Y2 + Gt G
™ DnH DH ' “DH " “DnH
Thus, the first two terms are the cost of overcoming line-haul and local distance
(assuming that many tours are needed); the third term is the cost of stopping at
the destinations; the fourth the cost of stopping at the origin, and the last one the
handling/loading cost.

/

+d.
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Holding costs

@ The holding costs can be expressed in a similar manner. For the pipeline
inventory cost per item, we have the following expression when C = ny:

r _1/2Ns ts 1
2z, = G- + k6 V22 4 0, + Zcts.
P IS i 2s 12 s 2 its
@ As with the expression for the total motion cost, the four terms correspond to
times spent in line-haul travel, local travel, destination stops, and at the
origin. The stationary inventory cost per item averages z; = ¢;H if we count
it both at the origin and the destination.
@ The rent cost can be ignored because if items are expensive compared to
transportation costs, they will certainly satisfy ¢; » ¢,; thus ¢, = (¢;+¢,) ~ ¢;,
and we can write z; = ¢y H. .

*Inclusion of rent costs would pose a problem because rent does not depend only on local
characteristics such as H and ns. An exception arises if the demand is stationary in time, D/ (t) =
D', because then the optimal solution is also stationary; i.e., H(t, x) is independent of t, and the
rent cost is ¢,H
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Total logistics cost

If instead of H (and as is often done in the literature) we use the delivery lot size
v = D’'H as a decision variable, keeping ns as the other variable, then the sum of
costs can be expressed as:

1 1
Z= Qg+ 01— + Qp— + 3N + QyV.
nsv v

where the «p, ..., a4 are the following interpretable cost constants, which will be
used from now on:

ap = (. + cir/s + ¢its/2); handling and fixed pipeline
inventory cost per item,

a1 = (2rcqg + ¢5); transportation cost per dispatch,
ar = (cqkd~Y? + ¢;); transportation cost added by a customer detour,
a3 = 1/2¢i(kd~?/s+ t,); pipeline inventory cost per item caused
by a customer detour and the ensuing stop,
aq = cp/D'; stationary holding cost of holding one item during the

time (1/D') between demands.
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Total logistics cost (cont.)

1 1
Z=0g+o1— + Qp— + 3Ns + Qg V.
nsv v

e zis a “logistics cost function” (LCF) that relates the cost per item distributed
to the decision variables of our problem.

@ With the new notation, we have: ngv < vphax. In addition, we require ns > 1.
Clearly, the LCF is constrained by these inequalities.

@ We will see that the determination of a realistic LCF is perhaps the most
important step in the design of a logistics system with the CA approach. In
the present case, the minimum of the total cost subject to these inequalities is
the solution to our problem.
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Total logistic cost (cont.)

o Note that « can (and often will) be omitted for optimization purposes. Note
as well that, with a small modification to the expressions for ay, ap, and ags,
This expression also applies to the VRP case with few tours*; k should be
replaced by k' and the term 2rcy should be omitted.

@ We will assume for the remainder of this section that the ay,as, and a3 for
large N are used in the optimization; if the resulting ns found in an application
is inconsistent with these values, then the a's should be changed to recognize
that N is “small”. Our qualitative discussion also applies to this case, which is
very similar.

*Recall N is small compared with n?
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The full vehicle condition

@ We now identify a condition under which the pipeline inventory term (aszns)
can be neglected, and show that in that case ngv = Vpyax.

o For any integer n, a feasible solution to the LCF is v = viyax/ns, which (ignoring
ap) yields:
o oon v
1 2 S+Oé3ns+044 max
Vmax Vmax Ns
@ An upper bound, 2%, to the minimum of the LCF, z*, is obtained from z(ny),
using ns ~ max{1l, vmax(a4/a2)1/2} that is:

z(ng) =

Vma:
(23]

. {0‘1 + 2(20a)Y? + a3Vinax (a/c2)V?*,if Viax(aa/a2)? > 1

+ 22 + a3 + Q4 Vimax, otherwise

Vmax Vmax

EERA 121 RER
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Lower bound

@ A lower bound to the optimal cost is obtained by neglecting the pipeline inven-
tory term aszns of the LCF, and optimizing the problem. We see at a glance
that LCF decreases with ng for any v; thus, one will always choose the largest

ns satisfying constraints: ng < Vinax/v. (Note that if v < viax, then ng > 1
holds.)

o If this value is substituted for ng in the LCF, without its first and fourth terms,

we obtain a function
a1 (6%
z(v) = + — + v
Vmax v

whose minimum (subject to v < Vimax) is a lower bound, 7. Its expression is:

>~ 24 (), if Viax (04 /02) /2" > 1
= ~ .

Sl 4 X2 4 aVnax, Otherwise

Vmax Vmax

FEFIRA 121 T KX 4.21 4542
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Gap between 2 and Z

o Notice that the expressions for z“ and Z are almost identical: z¥ — Z =

a3vmax(a4/a2)1/2 if vmax(a4/a2)1/2 > 1, and z¥ — Z = a3, otherwise.

@ The relative difference between any two of z, z* and Z' should be lower than
€ = 3= the ratio of the maximum value of (2 — Z) to 2(a04)'/?, which
is the second term of z/ when viay(ca/a2)'/? = 1. It bounds Z' from below.

@ The numerator of this constant, a3vmay, is the pipeline inventory cost accruing
to a full vehicle for one delivery detour; the denominator is double the vehicle
motion cost per detour. For most commodities this ratio is orders of magnitude
smaller than 1, so that the lower and upper bounds will nearly coincide.

@ In summary, if € « 1, then filling the vehicles (as done with the strategy leading
to zV) is near optimal; the resulting cost is close to the lower bound, obtained
without pipeline inventory costs.
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Problems with large gaps

@ The incentive to fill vehicles, used so far, does not apply if € = a3Vimax/(2a2)
is large compared with 1. The LCF minimization problem then yields a strict
inequality for nsv < vinax. We now examine the solution to this minimization
problem with varying conditions in time-space.

@ The unconstrained minimum of LCF can be obtained numerically, and it can
also be expressed analytically as a function of one single parameter 5. To see
this, let ng be close to the unconstrained minimum of LCF: ng ~ (a3 /a3v)Y/?;
then z*(v) = 2(aya3/v)Y/? +aa/v+agv. This expression reflects an achievable
cost if ng > 1.
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Problems with large gaps (cont.)

@ Because z*(v) is convex, its minimum is the root of dz*(v)/dv = 0. Using
V = (aza3v)/?/ay, we can express this equation in terms of V' as follows:

Bx (V) =14+V;ie, =)+ (V)3

where 8 = asa3/(a1a3)?
@ When V is small compared with 1 the second term in the last expression can
be neglected; in this case the solution is: vV ~ 8~Y* « 1 for 8 » 1.

o Conversely, if V' is large compared with 1, i.e., 8 « 1, the first term can be
neglected and the solution becomes v ~ f~1/3.
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Problems with large gaps (cont.)

@ The largest of the two extreme solutions can be used as a rough approximation
when 5 ~ 1.

@ The optimal vehicle load is nsv = Vas/as, and ns = ay/apV. If the vehicle
load is smaller than vinax and ns > 1, then the solution can be accepted. (This
happens if a;V < a1 and a3Vimax). The optimal H and z can also be expressed
as a function of v/, and thus of 3.
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Ignoring the pipeline inventory cost

o Without pipeline inventory, the solution z* is as the derivation for the lower

- 1/2 ' 1/2
+ 2(a2044) , if Vm3x(0é4/0(2) >1
bounder. z* ~ Z ~ Vgix . .
o T + Q4Vmax, Otherwise

Vmax Vmax

increases

linearly with a;*

@ Because there is an intercept, both z* and the total cost/ unit time ND'z*
increase “less-than-proportionately” with r; the ratio of cost to distance de-
creases.

@ We also see that z* decreases with the demand rate/customer D'T, but in-
creases with the spatial density of customers % if their aggregate demand rate
ND' (i.e., 6D') is constant. However, the total cost/unit time ND'z* is non-
decreasing with D',

@ While not so obvious, these scale economies are also shared by the solution
to LCF minimization problem as just described. While ND'z* increases with
D', z* decreases; the optimal cost also increases less than proportionately with
distance from the depot.

*which also increases linearly with the distance from the depot r since a; = 2rcy + ¢s
TOc4 = Ch/D/
iocz = Cdk571/2 + Cs
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Extensions

@ To estimate cost for a problem with varying D/(t),d(x) and r(x), one would
need to average the analytical solution over t and x. Although it may be
possible to do this in closed form using statistical approximation formulas for
expectations (these indicate that cost increases with variable conditions), a few
numerical calculations should suffice.

@ One could calculate z* for all the D(tmax)N items demanded, using their re-
spective t and x, but this would be too laborious. Instead, one can partition
the time axis into m = 1,..., Mintervals and Rinto p =1, ... P subregions so
that each (m, p) combination includes roughly the same amount of demand.
We use any interior point (t, x) of each combination to calculate both the pa-
rameters of the optimization and the resulting cost, z™. The estimated cost
is then the arithmetic average of the z™P.
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@ We now describe how specific solutions can be designed from the optimization
results in prior sections. It also discusses systematic ways for fine-tuning the
designs.

@ We already know that changes in the input parameters of an EOQ optimization
have a dampened effect on the decision variables; this is also true for the
objective function now at hand.

@ Thus, if D(t) and &(x) change slowly, the decision variables H (or v) and ns
will change even more sluggishly over t and R. Because, as with the EOQ
optimization, the decision variables themselves do not need to be set very
precisely, it should be possible to identify large regions of the time-space domain
where the decision variables can be set constant without a serious penalty.
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@ For our problem with identical customers, the partition is easily developed: (i)
divide the time axis into m = 1,2,..., M periods with nearly constant demand
rates; and (ii) partition R into p=1,2,... P subregions with similar customer
density and distance to the depot.

@ The subregions and time periods should be large enough to include respectively
several delivery districts and several headways. This ensures that the number
of stops in each district can be close to ideal, and that the theoretical headway
H(t, x) can be approximated with an integer number of dispatches.

@ We anticipate now that, by designing a different spatial partition for every time
period, this method can be extended to situations with different customers and
time varying customer densities.
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© Implementation Considerations
@ Clarens and Hurdle's Case Study
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@ An application of the technique for a very similar problem has been reported
by Clarens and Hurdle (1975).

@ These authors explored the best way of laying out transit routes from a CBD
to its outlying suburbs. They assumed that the demand was stationary and
changed with position.
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@ They describe the solution in terms of slightly different variables and inputs,
but the differences are only superficial. They define the vehicle operating cost
as a function of time (and not distance), c;, and do not explicitly account
for the number of stops; instead they assume that one knows from empirical
observations the time that it takes for a bus to cover one unit area — a
constant, 7(x), that can vary with position.

@ They define the demand as a density per unit area and unit time, A(x), which
changes with position. Instead of a distance from the CBD, r(x), they define
an express (line-haul) travel time, T(x), and as a decision variable they use the
area of a bus service zone, A(x), instead of ng(x). Thus, they work with the
following logistic cost function, which is equivalent to LCF:

2CtT TC
A)\H \H

L {T+TA/2} + cpH/2

where the bus load, AAH is restricted to be below v;,ax = 45 passengers. Note
that the constraints are also similar.
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Demand distribution for a transit line design problem
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Worksheet for a transit design problem
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Comparison of the actual and ideal zone size

Results of the transit line design process
(Source: Clarens and Hurdle, 1975)

Area Average )
Zone (square miles) Headway Load Load Txy) (1111:1; Isq
~—_ (minutes) OnBus Factor (minutes) .
Actual  A*xy) (persons) mi)
A 2.0 1.9 13 35 78 27 9
B 1.9 19 14 31 69 27 10
C 1.7 1.3 10 43 96 25 10
D 1.0 1.1 9 39 87 26 11
E 1.0 1.2 11 40 39 24 9
F 13 1.4 14 36 80 26 10
G 21 1.9 8 27 60 21 9
H 1.2 1.5 73 38 84 22 8
1° 1.2 1.2 7 45 Full 26 8
T 1.1 1.2 7 36 80 20 8
K 1.1 1.1 9.0 38 84 19 10
L 1.0 1.0 6.7 45 Full 24 13
M* 1.1 0.9 6.7 45 Full 26 13
N*® 13 0.8 5.8 a5 Full 29 16
o*° 0.9 1.0 8 43 96 25 11
P 1.0 1.0 9 30 67 17 11
Q 1.0 1.3 10 23 51 15 8
R 1.1 13 8 35 38 20 8
S 0.9 1.0 7 40 89 21 10
T 1.2 1.5 7 39 37 22 7
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@ Given the close agreement between these two columns of figures and the robust-
ness of the CA solution to small departures from the recommended settings,
one would expect to have a cost that is very close to the minimum.

@ The Clarens-Hurdle case study was an published example where the CA guide-
lines have been translated into a proposed design for a two-dimensional prob-
lem.

@ On reviewing the procedure, it becomes clear that a great deal of human in-
tuition is required to complete a design. Furthermore, careful efforts notwith-
standing, the designer may miss opportunities for small improvements at the
margin that depend on specific details (e.g., stop locations, street intersections,
etc.) of the particular problem. It might be worthwhile to use fine-tuning soft-
ware to find these possible improvements if any exist.
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© Implementation Considerations

@ Fine-Tuning Possibilities
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@ The rest of this section describes the results of some experiments where fine-
tuning software was used to improve detailed VRP solutions developed quickly
from the guidelines of TSP/VRP.

@ These authors tested simulated annealing (SA) as a technique that is well suited
for fine-tuning purposes. The brief discussion of simulated annealing provided
in this reference is included as Appendix B. The technique is attractive because:

o A prototype computer program can be developed quickly for most problems
since the SA logic is very simple. (These authors developed software for the
VRP, from scratch, in about three mandays.)

e The optimization can be controlled by means of input variables (called initial
“temperature” and ‘“cooling rate” or “annealing schedule”) which determine
how much the algorithm is allowed to increase (worsen) the objective function
at different stages of the process in the hope of finding larger reductions later.
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@ Simulated annealing is known to converge in probability to the global optimum
of combinatorial optimization problems, such as those arising when designing
in detail logistics systems.

@ Unfortunately, convergence is slow. To be guaranteed, the initial temperature
has to be very large and the cooling rate very slow; the computer time required
rapidly becomes prohibitively long with increasing problem size. However, with
an overall idea of the system'’s structure, and a near optimal initial solution
as would be obtained with nondetailed methods, the scope of the annealing
search can be restricted. As demonstrated in Robusté et al. (1990), a low
initial temperature achieves that.

@ It prevents the search from wandering away from the initial solution, while
systematically testing variations that exploit the details (specific locations of
customers, for example.)
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@ One of the examples in this reference considers a VRP problem with N = 500
points (randomly located according to a uniform density in a 6-inch by 10-inch
rectangle), C = 45 stops per tour and a centrally located depot; distances are
Euclidean.

@ For this test the VRP formula with k =~ 0.57, predicts a total distance averaging
179 inches. With a high initial temperature, the SA approach yielded tours that
were very long in reasonable times; after one day of computation it obtained a
set of tours 180.4 inches long. This was reasonable, but longer than the hand
constructed tours using the VRP guidelines presented earlier.

@ When the hand constructed tours were used to initiate SA with a low initial
temperature, the SA algorithm found enough modifications to reduce the total
length by about four percent — to 173.6 inches.
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SA solution
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Manual solution

H i ) 3 H 5 §

Figure: 500 Point VRP. C=45. 12 tours with total length = 179.8 inches.
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Other tests performed in this reference show that the non-detailed approach, fine-
tuned with SA, can obtain solutions with objective functions as low as those cur-
rently believed to be optimal. The efficiency of the twostep approach has also been
demonstrated in practice — the (non-detailed) results in Burns and Daganzo (1987)
were used in conjunction with SA to schedule the assembly lines in some GM plants
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@ These observations are in agreement with our philosophical conclusions. Like
the evolution processes in nature, to design a complex logistic system it seems
best to develop a preliminary design based on the overall characteristics of the
problem, and use the details later to fine-tune the preliminary design. This
view has been adopted in the recent works of Langevin and StMleux (1992)
and Hall et. al. (1994).

@ Although the CA approach and the SA algorithm seem to be ideal companions
for this twostep approach, other methods may also be useful. The critical
thing is not the specific approach for each step, but the fact that the first
step disregards details in searching over all possible solutions, and the second
step—restricted to a small subset of possible solutions—incorporates all the
details.

@ Perhaps other computer fine-tuning methods will improve on SA (Neural Net-
works and Tabu Searches...etc.). But the improvement should not be measured
only on computation grounds; the ability to develop the software quickly is just
as important.
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Overview

@ Symmetric strategies are extensions from strategies for identical customers
@ Asymmetric strategies allow different customer types to be served differently.

@ Conditions under which these more complex strategies are likely to be of benefit
are also discussed here
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Symmetric Strategies

o Let us allow D,(t) to vary across customers n, and possibly to be non-stationary.
With this generalization, even if the demand is stationary, D, can vary across
n.

@ With many customers the individual demand rates should be treated as “de-
tails”, which we try to avoid. To this end, an expected demand density rate
per unit area A(t, x) is used instead of the specific D,(t)'s.

@ A(t,x) is assumed to vary slowly with time and location so that the demand
in a subregion, P,* of R during a time interval [tp_1, tp) is:

tm
J J A(t, x)dxdt.
tm—1 XEPP

*P, is large enough to contain several destinations but of small dimensions relative to“R
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o Similarly, we define a customer density, 6(t, x), which is also allowed to vary
with time. Note that we are allowing here for the number and locations of
customers to change with time; all we require is that these changes can be
approximated with functions §(t, x) and A(t, x), that vary smoothly with ¢ and
X.

o Demand uncertainty is an important phenomenon when the tours have to
be planned before the demand is known at the destinations. It will be
captured by an index of dispersion function, as described below.
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o Take a partition {P1,...,P,,...,Pp} of R and a partition of time into con-
secutive intervals 7, = [tm—1, tm), and let Dy, represent the actual number
of items demanded in P, during 7p,.

o The parameter A(t, x) can then be defined as the average demand rate density,
so that {” Sep, At x)dxdt now gives the mean of Dy,
m— P

o We assume that, for any partition, the variables D, are independent, and
identically distributed. Then their variance can be expressed as:

var{Dpp} —f )y(t, x)dxdt

where (¢, ) is an “index of dispersion”, with “items” as its physical dimension.
Y(t,x) RAFESHIENIEAT, RHESTRNAKE
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var{Dpp} = Lm J;P A(t, x)y(t, x)dxdt

@ A special case of this model arises if each customer’s demand fluctuates inde-
pendently of other customers, either like a stochastic process with independent
increments — such as a compound Poisson process or a Brownian motion pro-
cess.

@ Although in most cases a fixed v should capture demand fluctuations well, we
allow ~(t, x) to vary slowly with t and x. An index equal to zero represents
known demand; no uncertainty. This case will be examined next.
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Recall the LCF:

1 1
Z= Qg+ 01— + Qp— + (3N + QygV.
nsv v

where the ag, ..., a4 are the following interpretable cost constants:

ap = (. + ¢ir/s + ¢its/2); handling and fixed pipeline
inventory cost per item,

a1 = (2rcqg + ¢5); transportation cost per dispatch,
ap = (cdk6_1/2 + ¢s); transportation cost added by a customer detour,
a3 = 1/2¢i(kd~?/s+ t,); pipeline inventory cost per item caused
by a customer detour and the ensuing stop,
a4 = ¢p/D'; stationary holding cost of holding one item during the

time (1/D') between demands.

The constraints are ngv < Vmax and ng > 1.
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@ For consistency with the literature, we continue to use H(t, x) and A(t, x) as
the decision variables instead of ns; and v. Both formulations are equivalent,
since there is a 1:1 correspondence between two sets of variables—the number
of stops in a tour is the number of customers in its district, which is given
by ns ~ 0(t,x)A(t,x), and the delivery lot size is the consumption during a
headway in the area around a customer: v =~ A(t, x)H(t, x)/6(t, x).

@ Making these substitutions in the LCF and the constraints, and recognizing
that D' = \/§, the cost per item at (t, x) can be expressed as:

01 002 | s Ay cH+
z=——+ — 4+« c e
AXH  xH TR 0
where ay, o and a3 are the constants defined in connection with LCF opti-
mization problem, which now can vary in both time and space; the constraints
become: AAH < Viax, 0A = 1, and AH < V4.
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@ The important thing to remember here is not new expression for LCF, but the
process followed to derive them and use them. This process is quite general
and can be used for problems involving various peculiarities.

@ Because it is impossible here to discuss all possible situations, the process
is only illustrated with three examples involving stochastic phenomena and
requiring some modifications to the equations.

@ The first example arises where items are indivisible and the expected de-
mand per customer per headway is less than one item;

@ The second when the customer demands are not known until the vehicles
make the stop

@ The third when the vehicles make coordinated adjustments to their routes
as demand information becomes known.
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@ Different Customers: Symmetric Strategies
@ Random Demand: Low Customer Demand
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Random Demand: Low Customer Demand

_ o, S
Z—A)\HJF )\H+5a3A+ChH+ozo

s.t. MH < Vpay, 0A > 1, and AH< V6

min

@ It implicitly assume that each customer is visited each time — the number of
stops is equal to dA. But if items are indivisible (as opposed to fluids, or very
small items) and the demand by individual customers is so low that some have
no demand during a headway, their stops can be skipped. 1% & K % ¢4
4 BB R BLIE T o4 1 18] BT AR o

@ For some demand processes, the proportion of stops that can be skipped should
decrease with H as exp(—H/H) 'where Hy is a constant that depends on t and
x. If the customers in a subregion are alike and their demand is well described
by Poisson processes*, then the parameter Hy is the average time between
successive demands at one destination; i.e., Hp = D'"" = §/A. For other
processes the relationship is similar.

L ERGTRHGA AR, B R 69 0 1) 7 Fa AR AR B A
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Random Demand: Low Customer Demand (cont.)

o The effective density of stops is only §[1 — exp~ /],

@ This expression must be substituted for the parameter § in the expressions for
(darz) and (daz) (remember that § also appears in ap and a3). The optimiza-
tion and design process can be carried out as described earlier. Although the
resulting optimum is slightly more complicated, two extreme cases are quite
simple.

o First, if H » Hy then the density of stops is § as before; the solution does
not have to be changed. The opposite extreme case with H « Hp, arising
for example if 6 — oo but D' — 0, also admits a simple expression for the
stop density, even if the demand varies across customers. The expression is
0H/Hy ~ AH* if items are not demanded in batches; then the number of vehicle
stops per tour, (AH)A, equals the vehicle load AHA as one might expect.

* R BLE BB BT SR, R LR AR AR B RENRE S AT KE
BHHRBLRFE B#H Wimd gkt 1N RiER% 136 / 207




B 3& |Outline

@ Different Customers: Symmetric Strategies

@ Random Demand: Uncertain Customer Requests
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Random Demand: Uncertain Customer Requests

_ o, 0o
Z_AAH+AH+6Q3A+ChH+aO

s.t. MH < Vipayx, 0A > 1, and AH < V6

min

o If a3 is small* we have seen that the minimum logistics cost will be such that
AAH = vpnax. There is an incentive to dispatch totally full vehicles.

@ Let us now see what modifications are needed if the exact demand on a vehicle
route is not known accurately when the vehicles are dispatched.

@ The system of interest operates with a headway (e.g., daily, weekly, etc.) to
be determined, and advertised to customers as a service schedule that is to
be met even if the volumes to be carried change with every headway. This
scenario can arise for both collection and distribution problems, although for
distribution problems of destination-specific items the demand will normally be
known.

*It implies that items are cheap
TA case with expensive items is not considered here because if time is of the essence, it is
unlikely that one would operate with imperfect information
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Random Demand: Uncertain Customer Requests (cont.)

R S L
min Z—A)\H-i- )\H+(5o¢3A+chH+ao

sit. MH < Vimax, A =1, and AH < v'0

o If the size of each delivery v, is both known and small compared with v,y it
should not be difficult to partition the service region into delivery districts of
nearly ideal shape with Zn Vp, & Vmax. Then, the distance formulae hold and
the LCF can be used without modification.

@ If some delivery lots are comparable to the vehicle's capacity, the routing prob-
lem is more difficult because one needs to balance the incentive for filling a
vehicle by delivering a right lot size to an out-of-the-way customer with the
extra distance that one would have to travel.
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Random Demand: Uncertain Customer Requests (cont.)

@ In view of the above, our discussion is phrased in terms of collection, although
hypothetical distribution problems with uncertain demand would be mathe-
matically analogous.

@ For collection problems some of the vehicles may be filled before completing
their routes, which would cause some of the demands to go unfulfilled.
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Random Demand: Uncertain Customer Requests (cont.)

@ The overflow customers (still needing visits) could be covered in the same
headway by collection vehicles with unused cargo space or, failing that, by
vehicles dispatched from the depot.

o Clearly, if some vehicles can be rerouted before returning to the depot, some
distance can be saved. Dynamic routing introduces modeling complexities that
will be discussed later. For now we assume that all the overflow customers
are visited by a separate set of secondary vehicle routes based at the
depot and planned with full information.

@ This information is gathered by the original (primary) vehicles, which are as-
sumed to visit all the customers. Because items are “cheap”, secondary vehicles
should also travel full.
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Random Demand: Uncertain Customer Requests (cont.)

@ The decision variables are A and H, as before, but now the capacity constraint
must be replaced by an overflow cost which depends on A and H. A new
trade-off becomes clear.

o If the average demand for a tour satisfies AAH < vinax, then the overflow cost
will be negligible, but most primary vehicles will travel nearly empty.

@ On the other hand, if AMAH & vihayx, a larger number of customers will overflow
on average—the actual number will depend on the variability of demand as
captured by its index of dispersion, ~.
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Random Demand: Uncertain Customer Requests (cont.)

T B
min Z_A)\H+ )\H+5a3A+chH+ao

s.t. MH < Vimax, 0A > 1, and AH < V6

@ Instead of a total cost per item, we work with a cost per unit time and per
unit area. For given A and H, the transportation cost per unit time and unit
area for primary tours is approximately independent of the overflow; it is well
approximated by the product of the constant factor A, and the first two terms
of z

(6751 50&2

AH = H

Strictly speaking, this expression is an upper bound because it ignores the
local delivery distance that it is saved by the stops that are skipped.
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Random Demand: Uncertain Customer Requests (cont.)

o Note that, especially when the fraction of tours overflowing is small, the
overflow customers will tend to be geographically distributed in widely
spaced clusters of customers corresponding to overflowing tours. Be-
cause the overflow transportation cost formulas with clustered destinations are
more complicated, two simple bounds will be used instead to approximate the
secondary distance traveled*. #& & & 69 5 B Hi

@ It should be intuitive without a formal derivation that smearing the clusters
uniformly over R increases the distance traveled, while collapsing them into
a single point decreases it. Upper and lower bounds for secondary distance
are derived below, imagining that clusters are either spread or fused in this
manner.

*Blumenfeld and Beckmann, 1984, have developed formulas for VRP's with clustered demand
points
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Random Demand: Uncertain Customer Requests (cont.)

i B 1B R R A

@ An expression for fy, the fraction of items that must be delivered or collected
as overflow, will be derived shortly.

@ Assume for now that fy is given. Then the number of secondary (overflow)
tours per unit area is AHfy/vimax™, and the number of stops is close to fd.

@ This expression implies that the fraction of items overflowing is the same
as the fraction of customers; the expression is exact if primary vehicles don't
deliver (or collect) partial lots, and is also a good approximation in other cases.

AH REBAGERE, RV Vmax BT EBBEFTIRSOMES, BRI fo T4 8) L% BT
TR F5- 84 JBR B3
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Random Demand: Uncertain Customer Requests (cont.)

RERENH) BT A0, WIZMYIES
o With de-clustered overflowing customers, the upper bound to the secondary
distance per unit area is thus:

2rAHfy,

Vmax

+ k(fy6)M2.

We are assuming here that the total number of customers is greater than the
squared number of stops per vehicle: Nfy » (Vimaxd/AH)?

o With perfectly clustered groups the density of stops equals the density of
incomplete primary tours. If we let gg denote the probability that a tour
overflows, then this density is go/A; thus a lower bound for the distance per
unit area is:

2r\Hfy

Vmax

+ k(go/A)2.
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Random Demand: Uncertain Customer Requests (cont.)

@ The secondary transportation cost per unit area and unit time is obtained by
multiplying either distance bound by ¢,/H, and adding to the result the cost
of stopping. For the upper bound we have:

2Nfy k()12 M- )
My | k(fod) ]+s<o+o)

overflow transport cost ~cy [

Vmax H Vimax H
pY k(£6)Y/? 6
:al(vo)+ (0/)-/ Cd+ oHCs

o For the lower bound, the factor (f,8)%/? of the second term should be replaced

by (go/A)Y2. If the overflow is so small that only a few secondary tours are
used, Nfy < [Vmaxd/AH]?, then k should be replaced by k' and r should be set
to 0, regardless of position.
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Random Demand: Uncertain Customer Requests (cont.)

@ Either on primary or secondary tours, items reach the destination at regular
intervals, as required, approximately H time units apart. Thus, the stationary
holding cost per unit time and unit area is:

holding cost ~ c,(AH)

@ We are now ready to write the logistic cost function for our problem. In
practical situations one would expect the difference between the upper and
lower bound to be small. Therefore, we will use one of these bounds (the
upper bound) below.
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Random Demand: Uncertain Customer Requests (cont.)

@ In terms of total cost per unit time and unit area (the sum of primary and
secondary transportation costs, plus the holding cost), the upper bound is

/
(a1) | (o) + (0 A Vo + (/«;1/2&,)1[‘13‘_/2 + (5cs)% + (Aen)H,

v Vo,

where the parenthetical items are constants and the rest (A, H, and f) are
decision variables. Note that the constant handling cost, ag, has been omitted
from the LCF.
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Random Demand: Uncertain Customer Requests (cont.)

@ The fraction of items that overflow is related to A and H.

@ Recall the following equations

mean{Dpmp} = J N x)dxdt.
t=t,,—1 JXxE

var{Dpp} = J JP ~(t, x)dxdt
P

The mean and variance of the number of items to be carried by a primary
vehicle are AAH and MAvH. The expectation of the excess of this random
variable over v, is the average overflow for the vehicle.
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Random Demand: Uncertain Customer Requests (cont.)

Assuming that the demand is approximately normally distributed, and letting ¢
denote the standard normal CDF (and @’ its derivative —the PDF), we can therefore
write:

1 «© x— ANAH
x| (= vimado (220
O 5aH ), X ) ((WH)W)

_ AH — Vinax)
_(AAH)y) 2y | PAH = Vinax)
AR [ (VAYH)

where .
V(z) = f, ‘Cb(W)dW: d'(2) + z9(2)

which is a convex function increasing from zero (when z — —o0 ) to oo (when
z— o ). Note that fy may depend on position and time.

AR H R L BiXEEZRAES A B, EBAKRTFT Vinax 1918
Fo Gy EGEHA N AH, 7.
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Random Demand: Uncertain Customer Requests (cont.)

L (a1) | (02) A 12 0 5o
Az = AH+ m +(o¢1vmax)fo+(k5 cd)H +(5CS)H+(/\C;,)H,

@ Thus, Az should be minimized, subject to the expression of fy.

@ The procedure is simple. Conditional on AH, i.e. on the average vehicle load
per district, fy is fixed and Az only depends on H; the optimal headway can
be obtained in closed form from the expression of Az as an EOQ trade-off
involving the 2nd, 4th, 5th and 6th terms of that expression. The resulting
cost is only a function of AH, which can be minimized numerically.

@ The procedure also works for the lower bound, and when the number of sec-
ondary tours is low. For the lower bound one should replace the fourth term
of Az by kcy(go/A)Y/?/H, where go = ®(z). Note that gy is fixed if AH is fixed,
like fy.

BHHRBLRFE B#H Wik R %t LN RiEA% 152 / 207



@ Cost estimates and guidelines for the construction of a detailed strategy can
be obtained as usual, by repeating the minimization for a few combinations of
(t, x).

@ We could also verify that the final strategy and the resulting cost do not change
much if the overflow local distance term is replaced by the lower bound.
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@ Different Customers: Symmetric Strategies

@ Dynamic Response to Uncertainty
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Dynamic Response to Uncertainty

REHAT, FHGIAET AN EAE

@ In many applications, vehicle routes can be adjusted dynamically during the
course of operation. For example if a collection truck of an express package
carrier falls behind schedule, central dispatch can reassign some of its remaining
customers to currently underutilized trucks. % 3 4% TR E R 69 F £ %
& T bR AR, BUiE 60T KA ABRE S B B AT R E A 8 F £

o If a firm can do this systematically with an efficient control strategy, it should
be able to operate with fewer vehicles.
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@ To design such a system we must make a single set of planning* decisions
at the beginning of the planning period, e.g., choosing # trucks; and then a
stream of control decisions that change dynamically as information is revealed
over time.

*or configuration
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To minimize the combination of fixed and operating costs, configuration decisions
must anticipate and accommodate the long-run needs of the control strategy; that
is, the system should be planned for control. This is difficult to do exactly but can
be achieved approximately if we can find a family of control strategies that is:

@ parametrizable (describable in terms of just a few parameters);

@ appealing (containing a near-optimal strategy for the configuration of every
reasonable system);

@ simple (with a predictable expected cost).

Properties (1) and (3) guarantee we can write an LCF that captures approximately
all fixed and recurring costs in terms of the configuration variables and control
parameters. Property (2) guarantees that good control parameters exist for every
reasonable configuration.

BHHRBLRFE B#H Wik R %t LN RiEA% 157 / 207



LR M- H i F k2 K (cont.)

@ Hence, the minimum of the LCF is an “appealing” plan. Since an analytic
expression exists the minimum can be searched effectively with conventional
optimization methods, even if the number of variables and parameters is con-
siderable.

@ The selection of a proper family is more an art than a science. The temptation
is always to look for the most efficient control strategies, excelling at (2), even
if they fail the simplicity test (3). The problem with this approach is that a
search for the optimum configuration cannot then easily incorporate the effects
of control. The result can be gross sub-optimization.

@ For planning purposes we prefer to look for idealized* control strategies that
can be systematically analyzed. This allows us to explore a much larger solution
space when configuring the system. The idealized strategies play the role of
approximations to the more refined strategies during the optimization process,
but the refined strategies can still be used when the system is operated.

*less efficient
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@ Let us consider again the load-constrained system, but assume now that H =1
day as in package collection systems. We want to configure a system where
vehicles that are partially filled at the end of their runs can cover the overflow
customers of other vehicles. Although very complex dynamic routing strategies
can be designed to achieve this goal, we shall be satisfied with a simple one
that is obviously sub-optimal but improves significantly on the static approach

@ We partition the service region into an inner region close to the depot
(region 2) and an outer fringe (region 1). Only customers in region 1 are
allocated to primary tours. We use only one planning variable: # of primary
service zones in region 1, which equals the number of vehicles m. The radius
of the inner region, rr, is our control parameter.
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Figure: The idealized control strategy has two phases with several steps
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@ In phase one vehicles travel to their service zones (step 1), serve their customers
(step 2), and either return to the depot, if filled, or else stop at the boundary
between regions 1 and 2 (step 3). Unfilled vehicles wait there for the start of
the second phase, until all vehicles are done.

@ Then, they are repositioned along the boundary in anticipation of serving care-
fully designed groups of remaining customers (step 4). The size of these groups
is chosen to be consistent with each vehicle's available capacity. Vehicles first
serve the part of their group in region 1(step 5), then the part in region 2 (step
6). Region 2 customers are arranged in wedges that can be served efficiently
as vehicles return to the depot. Finally, if any customers remain unserved,
they are served with a set of secondary tours (step 7). Note that virtually no
customers require such secondary tours when systems are configured optimally.
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@ This strategy generalizes the static procedure, since the effects of the latter
can be essentially achieved by setting rr = 0. Although the new strategy
is sub-optimal, it has clear efficiencies over the static procedure; thus, it is
“appealing” in the sense of (ii). The strategy also has properties (i) and (iii),
since it* is parameterized by the inner radius ry and is simple.

@ An analytic approximation for the LCF is given in Erera (2000). The approx-
imations in this reference were designed to be most accurate for intermediate
values of rr, where the optimum was expected to be. The formulae are not
given here because they would take too long to explain, but the qualitative
results are interesting.

*EERALR ARE—BREKFET LB it
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Figure: This figure shows how the approximate total distance per day varies as a function
of rr for a test problem, after the number of vehicles m was optimized. The figure also
includes a dotted line from a simulation that used the recommended values of m and rr,
and a more sophisticated control algorithm. This curve gives the actual distance that
could be expected in an implementation.
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@ Reassuringly, the value of r recommended by the optimization (the minimum
of the solid line) yields a near-minimum actual distance. Note from the figure
that this distance is considerably smaller than that achieved with the static
strategy (rr = 0).

@ Erera (2000) shows with a battery of 20 problems that the reduction in the
required number of vehicles is even greater.

@ The portion of the vehicle fleet required by uncertainty (the “fleet penalty” in
Erera's lingo) was reduced by 50% or more in 19 out of 20 cases and by more
than 70% in half of the cases. The median reduction in the “distance penalty”
due to uncertainty, on the other hand was only about 30%.
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© The Non-detailed Vehicle Routing Models

© !dentical Customers and Fixed Vehicle Loads

@ !dentical Customers and Vehicle Loads Not Given
© Implementation Considerations

@ Different Customers: Symmetric Strategies

0 Different Customers: Asymmetric Strategies

© Other Extensions
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The scenario

@ We now explore the advantages of offering different service levels to customers
with different consumption rates and/or different holding costs.

@ Because these differences are likely to be most notable for collection problems,
our discussion will be phrased in these terms — factories and manufacturing
plants typically consume a wide selection of parts and raw materials even
if their product line is homogeneous.

@ Before explaining how asymmetric collection strategies can be designed, we
introduce why they are desirable with a very simple example with two customer
types.

HHBRFE B
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@ Different Customers: Asymmetric Strategies
@ An lllustration
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The LCF

G S
Z—A)\H+)\H+5(13A+ChH+()éo

s.t. AMH < Vinax, 0A = 1, and AH < V0

min

o Consider a problem with stationary conditions (i.e. A and § independent of
time) obeying the LCF for which it is desirable to fill the vehicles. More
specifically, we assume that: (i) the third (pipeline inventory) term of LCF
can be neglected because items are “cheap”, and (ii) that only constraint
AAH < vihax plays a role because storage room at the origins is plentiful
and the customer density is so large that the ideal # of vehicle stops is sure
to exceed 1. We also assume that the stop cost ¢s can be neglected.
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The LCF (cont.)

a1 (50&2
— 4+ — + cpH+ ap s.t. MAH< v,
ANH \H h 0 max
@ Let us now examine how the optimal system cost depends on A and §. Because
z decreases with A for any H, its minimum is reached for as large a district

area A as possible.

minz =

@ Therefore, as expected, the vehicle capacity constraint must hold strictly: A =
Vmax/(AH). On making this substitution and minimizing the resulting EOQ
expression with respect to H, a simple formula for the cost per item z*, is
obtained.
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o If ag (chH = ay4v)* is replaced by its expression in terms of § and A (i.e.,
ayq = ¢pd/A), and the result is expressed in cost units per unit time and unit
area, the formula becomes:

AZ* = B + (Ba\)V26Y4,

where 81 = ap + a1/Vmax and B2 = 4cpcqk. Notice that A\z* increases at a
decreasing rate with A, and f2; this concavity encourages discrimination

*Recall oy = cp/D' = cpH/v.
EERA 144 WA X 4.27a £iE
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Two different types of customers

@ Suppose that there are two customer types, n = 1,2, with demand character-
istics (A, 0,) and with different ¢y, so that 3, is different for the two customer
types: [32(1) and 52(2). (We use n to index customer classes, instead of cus-

tomers.)
@ Note then that A = \; + X\> and 6 = 61 + 0».
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Separate delivery

If the two customer classes are treated completely separately, as if the other did

not exist, the combined cost per unit time and unit area, instead of being given by
AZ* = 1A + (B2AY2)6%/4, would be:

2

A=) [/\,,61 + (8 ) v 5;/4]

n=1

: my 2 1/
=M+ Y (BA) e
n=1
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When this strategy is best?

It is best if:

2 2 2
2 B("))\ 1/251/4 (Z /82(’7))\")1/2(2 5n)1/4 Cauchy-Schwarz Inequality

n=1 n=1

If the two customer types are similar, this inequality does not hold. Therefore,
a symmetric strategy is best: items should be shipped together because with the
higher demand density resulting from amalgamation vehicle tours can cover smaller
zones and save operating costs. This is not always the case, however.

*The inequality holds when 85" A, /612 # {2 5, /622
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When this strategy is best?

2 2 2

Z B(n 1/251/4 (Z 5§n))\n)1/2(2 5n)1/4

n=1 n=1 n=1

@ This will hold if one set of suppliers is highly concentrated d; ~ 0 while
producing many items that are expensive to store (Alﬁz(l) large), and the other
set has opposite characteristics (d; is large but B (2) ~0). F—EBEpHEF
AAETERES,; %R EH 2 oH B A4 A 24

@ Separate service for the two sets is then reasonable because the distribution
strategies for both sets should be different. For the second set one would like
to save operating costs at the expense of holding cost (one would use a large
H in order to reduce the area served by each vehicle) and for the first set one
would do the opposite. % = XAt m % &% A ZAIR F BLiE, R@idE TR
BAETRATEEREA, 5 —ERZ.
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Combined delivery v.s. separate delivery

@ In both cases the local operating costs plus the holding cost ((Bén))\n)l/25,l7/4)
would be close to zero. However, if both items types are combined together,

neither of the factors on the right side ((32_; Y An)Y2(32_, 6,)Y4) of is
close to zero — service has to be moderately frequent because some of the
items are expensive to store, and tours must cover moderate size areas because

all destinations have to be visited.

@ Clearly, the requirements of the two sets of customers interfere with each other,
increasing cost dramatically.
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@ This phenomenon explains why separate logistic systems are used to carry
widely different items in real life, even if from a transportation standpoint
alone it would seem wise to combine them.

@ It should not be surprising to find several transportation modes (taxis, limousines,
buses, etc.) at the disposal of passengers exiting an airport. For freight trans-
portation, the differences in the requirements of various customers are less
likely to merit discriminating service; but the possibility should be considered.
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@ Different Customers: Asymmetric Strategies

o Discriminating Strategies
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@ For general problems, the example just described suggests that cost may be
reduced if the set of all customers is divided into classes with different charac-
teristics, served with separate collection systems .

@ For a given set of classes, total cost can be easily estimated — the cost and
structure of near-optimal symmetric strategies would be used within each of
our subsystems.

@ The tricky part is defining the customer subsets that will minimize total
cost. Daganzo (1985) presents a simple dynamic programming procedure to
achieve this goal without detailed customer information — the method only
uses the frequency (probability) distribution of customer characteristics — and
shows in the process that the optimal solution would rarely exhibit more than
2 or 3 classes. When it is found that cost is minimized with only one class,
discriminatory service is not cost-effective.
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@ Although we have ignored the pipeline inventory cost in this lecture, and have
also assumed that the same transportation mode is used for all the subsystems,
this is not a prerequisite for discriminatory service to be attractive.

@ It is impossible to discuss here all the possible cases that can arise in detail,
but a general statement can be made: if customers are very different, then
we should check whether dividing them into a few classes with (highly)
different characteristics — and serving them separately — can reduce cost;
this is unlikely to result in much gain when customers are not very different,
though.
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@ With the approach just described, each customer class n is designed separately
and is characterized by design parameters A, and H,.

@ By restricting these design parameters somewhat, Hall (1985) has developed a
strategy that allows customers from all classes to share the transportation
fleet while being visited at different frequencies. He requires A to be the
same for all customers and each H, to be an integer multiple of the time
between dispatches H, that is, H, = m,H, for an integer m,. He assumes
that vehicles are dispatched at times t = 0, H,2H, etc., visiting each time
(1/mp)th of the customers in every class n. This allows the effective stop
density, >, {d,/my,}, to be greater than for any class alone while ensuring that
individual customers are only visited every m,, dispatches; it decreases the local
transportation cost.
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@ With the help of fy, a variable denoting the fraction of customers served in
each period, Hall's strategy can be defined without resorting to classes.

@ Accordingly, the symbol “n" now reverts to its original meaning, indexing indi-
vidual customers. We seek the optimal m, for individual customers, as well as
the optimal H and fy. As done at the outset, let us assume that the conditions
are such that vehicles will be dispatched full.
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@ Then, the line-haul motion cost per item is a;/Vmax, and does not depend on
the allocation scheme for customers. The local motion cost per unit time and
unit area is: /2

LO(S) + csiﬁé.

H H

@ This somewhat conservative estimate assumes that stops are randomly and
uniformly distributed within subregions of R larger than a collection district; it
may be on the high side if customers of a similar kind cluster together.

Cdk

@ The holding cost per unit time in a subregion of unit are P is:

> (maH) D,

neP
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@ The system can be designed with a simple decomposition method. Conditional
on 2 and H, the local motion cost is fixed; thus, cost is minimized by the m,'s
that minimize the holding cost. These m,'s, to be consistent with £, must

satisfy:

Z 1/m, = 5.

neP
Once the m, have been found, the conditional total cost is obtained. Testing
various values of £ and H, we can identify a near-optimal solution.

o Alternatively, if one replaces the constraint [m, = 1,2,3,...] by [m, > 1], a
simple approximation for the minimal holding cost for a given # and H can be
obtained. The optimal strategy is then defined by the minimum over £ and H
of the sum of this approximation and the local motion cost expression.
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One of the reasons for the very extensive literature on algorithms to vehicle routing
problems is that in actual applications almost every problem has some peculiarity
that renders it unique. We have already seen that there can be a variety of cases
depending on:

@ the relative size of the number of tours and the maximum number of stops per
tour.
the relative cost of rent, inventory, and operating costs.
limitations to route length and storage space

dissimilarity in the values of items and the demand rates at different destina-
tions

© 00O

amount of uncertainty as to the customer lot sizes.
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In addition (and this is not an exhaustive list) one might find situations in which
time enters the problem because customers request service during certain “time
windows”, or there is a limit to the amount of time an item can spend in transit
(perishable items). There also are situations where vehicles do both distribution
and collection (routing with backhauls), and situations where vehicle loading con-
siderations make it advantageous to visit customers in an order which does not
minimize the total distance traveled.
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© Other Extensions
@ Routing Peculiarities

@ Interactions with Production
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@ At the core of our proposed two-step method for solving general distribution
problems there should be a simple and efficient routing algorithm, whose per-
formance can be quantified by means of simple formulas using average density
as an input, instead of detailed customer locations. It is then a simple matter
to add holding and pipeline inventory costs to the motion cost to define a
logistic cost function. If routing/scheduling strategies can be defined in terms
of a few decisions variables that are constrained only locally in the time-space
domain, then the minimum of the (constrained) logistic cost function will ap-
proximate the cost generated by items in different portions of the time-space
domain. The CA approach can be used.
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@ Some routing cost models that allow this to be accomplished already exist.
They are now briefly reviewed. Simple transportation cost formulas have been
proposed for time-window problems (Daganzo, 1987a,b). The results show how
cost increases with the narrowness of the windows, and with the proportion
of customers with tight requirements. The proposed routing strategy uses a
different set of delivery districts for the customers in each time window, and
staggers the zones in such a way so as to leave most vehicles in favorable
locations at the beginning of each new window period.
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@ Perishable items such as newspapers (Han, 1984, and Han and Daganzo, 1986),
lead to VRP structures which are similar to those arising from the vehicle
route length limitations discussed in Sec. 4.4.1. The main difference is that
service districts that are far away form the depot should be (i) more elongated
than usual and (ii) covered in a one-way pass that begins at the end of the
district that is close to the depot and terminates at the far end. Although this
modification increases the line-haul distance traveled, it also allows distribution
to begin sooner and the districts to include more stops.
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@ Models with both pick-ups and deliveries have been constructed for public
transportation systems (Daganzo, Hendrickson and Wilson, 1977, Hendrickson,
1978) serving one focal point and a surrounding area. The strategies examined
in these early works, however, are not as general as possible; they only consider
two extreme cases for a partition of the surrounding area into service zones.
More recently, Daganzo and Hall (1990) present an improved cost model for
routing with backhauls, emphasizing cases where the total flow in one direction
(e.g. outbound from the depot) is a few times larger than in the other direction.
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@ The basic idea is briefly summarized below for the case where the dominant flow
is outbound; the reverse situation is similar. One simply constructs distribution
tours as if there were no pickups, allocates each pickup to the nearest return
leg of a distribution trip (or “spoke”), and finally modifies the vehicle tours in
recognition of the newly assigned stops. Because the density of spokes increases
rapidly toward the depot, significant vehicle deviations are only required for
pickups near the outer fringe of the region. Pickup miles on the fringe can be
reduced by ending the outermost delivery tours at the far end of their districts
and by other modifications that are geared to optimize the spatial distribution
of spokes. In fact, it is shown in Daganzo and Hall (1990) that under some
conditions it is almost as if the secondary stops added only a stop cost and
no distance cost. Hall (1993) has applied the concept of spokes to the VRP
problem for deliveries only, in which customers demand large and small items.
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@ Another complication that deserves attention involves the interaction of vehicle
loading and routing. When items have awkward shapes and are large, so that
only a few fit in a vehicle, vmax may not be fixed; it may depend on the specific
customers that are visited or even the order in which they are visited. The latter
phenomenon may arise if weight distribution restrictions, for example, dictate
that some items (and thus some stops) must be handled before others. This
topic is very complex and hard to handle generally; see Hall (1989) and Ball
et al. (1995a) for example.
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@ Other Extensions

@ Interactions with Production
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Another area where further results may be desirable involves the interaction of
physical distribution with production schedules. This interaction sometimes offers
an opportunity for further cost reductions.
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@ This subject was broached in Sec. 4.3.3 (Inventory at the origin), where it was
suggested that production of (destination-specific) items should be rotated
among geographical customer regions every headway H. Dispatching the ve-
hicles to a region immediately after its production run was completed greatly
reduced the holding costs at the origin. It was assumed that production would
be coordinated with transportation in this manner without much of a penalty.

@ More likely, though, there may be a set-up cost associated with each switch
in production item types. In this case production costs may be reduced by
switching less frequently and holding higher inventories at the origin. An inte-
grated solution can then be obtained by including in the logistic cost function
the production set-up costs, e.g., as explained below.
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@ If no attempt is made to coordinate the production schedule with the physical
distribution schedule, then the inventory at the origin of items of a certain
type can be decomposed as shown in Figure into a (shaded) component which
depends on the time between setups for that item type, Hs , and a (dotted)
component which depends on the transportation headway, H:

. . . G G
average inventory cost per item at origin ~ 5 + EH'

We are assuming that the number of item types is large and, therefore, the
steps of the production curve are nearly vertical. Similar conclusions can be
reached for few item types.
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Figure: Inventory accumulation when no attempt is made to coordinate production and
distribution
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@ The maximum accumulation also decomposes in a similar manner:
maximum accumulation ~ HsD' + HD

@ Because production costs depend on H; and not on H, the sum of the pro-
duction and logistics costs is made up of two components: (i) a production
component with only production decision variables (including Hs), and (ii) a
logistic component with only logistics variables (including A and H). Logistics
and production decisions, thus, can be made independently of each other.
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By selecting H to be an integer submultiple of Hs, or vice versa, it is possible to
reduce the inventory time at the origin by an amount equal to the smallest of H and
H;, and the maximum accumulation becomes the difference between the maximum
and the minimum of H,D' and HD' .
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@ If this kind of coordination is feasible, the sum of the production and logistics
costs no longer decomposes, and a coordinated production and distribution
scheme should be considered.

@ Blumenfeld et. al. (1985a) and (1986) have examined the case where each
district is constrained to contain only one destination and all shipments are
direct (ns = 1). They illustrated situations where coordination of production
and distribution is most conducive to cost savings, and provided a bound on
the maximum possible benefit.

o Further research may be worthwhile to relax the ng = 1 assumption and to
allow more destinations than item types.
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@ Throughout this talk it was assumed that the total production rate (not just
the schedule by item type) could be adapted to the changing demand without
penalty. In practice, though, this is rarely so, even if the items produced are
generic. (It is more costly to change the quantity of items produced than
the kind of items produced because to adjust the production rate one needs
to hire extra labor, pay overtime or fire labor as needed — and the penalty
for these actions is large; Newell, 1990, has examined the production rate
adjustment process.) To conclude this lecture, we show that this seemingly
strong assumption can often be relaxed.
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Figure: Production for a gradually decreasing demand
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@ The figure shows how a production curve may be adapted to a gradually de-
creasing demand; the objective is tracking the smooth envelope to the crests
of the shipment curve (which varies like the demand curve) as closely as pos-
sible, without many production rate changes. We had already known that for
a similar model described previously, lot size decisions were independent of
production decisions; fortunately, this is also true now.

@ In this figure, the inventory at the origin decomposes in two components: (i)
a (shaded) component, which is due to the discreteness in the production rate
changes and is independent of the shipping schedule, and (ii) a dotted compo-
nent which is the same as if the production schedule was adjusted continuously
as assumed in this chapter. Thus, costs can be divided into two components
affected respectively only by production, or only by logistics decision variables.
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Any questions?
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Readings

@ Daganzo. Logistics System Analysis. Ch.4.
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