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Revisit of ideas of CA

@ Accurate cost estimates can be obtained without precise, detailed input data,

@ Departures from an optimal decision by a moderate percentage do not increase
cost significantly. Since there is no need to seek the most accurate estimate
of the optimum, there may be little use for highly detailed data

@ Detailed data may get in the way of the optimization, actually hindering the
search for an optimum

@ Thus, the CA advocates a two-step solution approach to logistics problems: the
first (analytical) step involves little detail and yields broad solution concepts;
the second (or fine tuning) step leads to specific solutions, consistent with the
ideals revealed by the first — it uses all the relevant detailed information.
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© One-to-one systems with constant production and consumption rates -> the
robustness and accuracy of the results (Daganzo's work)

©

One-to-one systems with variable demand over time -> numerical methods
and a continuous approximation (CA) analytical approach that is based on
summarized data (Newell’s work)

Extension of the CA approach to a location problem that has an analogous
structure

The accuracy of the CA solutions

Extension of the CA approach to multidimensional problems with constraints

©00 O©°

Network design issues.
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© The Lot Size Problem with Constant Demand
© The Lot Size Problem with Variable Demand
© Other One-Dimensional Location Problems
@ Accuracy of the CA Expression
© Generalization of the CA Approach
@ Network Design Issues
@ The Effect of Flow Scale Economies on Route Choice

@ Solution methods

@ Logistics systems and the nature
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Let us now explore the optimization problem for the optimum shipment size, v*:

B
z={Av+ S ivs Vimax } (1)

0o A=cy/D AT RHRER A B=cr A THNKHE TZMT A
@ Consider first the case Vimax = @ . Then v* is the value of v which minimizes
the convex expression Av+ B/v. v¥ = ,/B/A

@ The optimum cost per item is: z* = (cost/item)* = 2+/AB, which is easy to
remember as “twice the square root of the product” of the terms in 1
@ As a function of ¢f ¢, and [, the optimum cost per item increases at a

decreasing rate with ¢r and ¢, and decreases with the item flow D’. There are
economies of scale, since higher item flows lead to lesser average cost.

D RTFRAL A E, BERBGRE R A oHy + GH+ itm, oy = o+ ¢ AR RA
Fo L EFRHBRAZ A, BRFHR citm, 51N H = H=v/D Fakiz X
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We now examine the sensitivity of the resulting cost to errors in
@ the decision variable, v
e the inputs (A or B)

@ the functional form of the equation
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Robustness in the Decision Variable

@ Suppose that instead of V¥ , the chosen shipment size is WY = v, where 7 is
a number close to 1, capturing the relative error in W. Then, the ratio of the
actual to optimum cost 2°/z* will be a number, o/, greater than 1, satisfying:

B
v+/B/A

@ Independent of A and B, this relationship between input and output relative
errors holds for all EOQ models.

¥ = VA/BJA + ——)/[2VAB| = [ + 1] @)
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Robustness in the Decision Variable (cont.)

@ If v is between 0.5 and 2, so that the optimal shipment size is approximated
to within a factor of 2, then 7/ < 1.25. If v is between 0.8 and 1.25, then
~v" < 1.025 — A cost within 2.5% of the optimum can be reached if the
decision variable is within 25% of optimal.

o If 7 is several times larger (or smaller) than 1, then the cost penalty is severe,
ie, v~y (ory ~1/7)

@ Obviously, while it is important to get reasonably close to the optimal value
of the decision variable (say to within 20-40%), from a practical standpoint it
may not be imperative to refine the decision beyond this level.
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Robustness in the data errors (cont.)

@ Let us now assume that one of the cost coefficients A (or B) is not known
precisely. If it is believed to be A’ = §A (or B = §B) , for some 6 ~ 1, then
the optimal decision with this erroneous cost structure is:

x| VBASTIE = v A= 6A
| vt if B'=08B

@ Because the actual to optimal shipment size ratio, V*/v*, is either 6—'/2 or
8172 the cost penalty paid is as if ¥ = §/2. Thus, the resulting cost is even
less sensitive to the data than it is to the decision variables
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Robustness in the Data Errors (cont.)

o If the input is known to within a factor of 2 (0.5 < 6 < 2), then 0.7 < y < 1.4
and ' < 1.1. The cost penalty would be about 10%, whereas before it was
25%. The penalty declines quickly as d approaches 1

@ This robustness to data errors is fortunate because the cost coefficients (for
waiting cost especially)are rarely known accurately
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Robustness in the Model Errors

@ A cost penalty is also paid if the EOQ formula itself is inaccurate.

@ To illustrate the impact of such functional errors, we assume that the actual
cost, a complicated (perhaps unknown) expression, can be bounded by two
EOQ expressions; the cost penalty can then be related to the width of the
bounds.

@ Suppose, for example, that the actual holding cost zx(v) is not exactly equal
to the EOQ term (Av), but it satisfies:

Av—A/2 < z4(v) < Av+ A)2 3)
for some small A. Such a situation could happen, for example, if storage space

could only be obtained in discrete amounts. Because A is small, the EOQ lot
size v¥* is adopted.
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Robustness in the Model Errors (cont.)

@ The absolute difference between the actual cost [z,(v*) + B/v*] and the pre-
dicted EOQ cost z* cannot exceed A/2. It is also easy to see that the difference
between the optimal cost with perfect information, min{z,(v) + B/v}, and z*
cannot exceed A/2 either. As a result, the difference between the actual and
theoretical minimum costs — the cost penalty is bounded by A.

@ Usually, this penalty will be significantly smaller than the maximum possible

@ If A is small compared to z* (e.g., within 10%) the functional form error should
be inconsequential. The same conclusion is reached if the motion cost is also
inaccurate.

@ In general, the EOQ solution will be reasonable if it is accurate to within a
small fraction of its predicted optimal cost.
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Unusual conditions generating the largest penalty
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Error Combinations

SRR ENEESTROEIRE, FR—ERAREEM
o If errors of the three types exist, one would expect the cost penalty to be
greater. Fortunately though, when dealing with errors the whole (the combined
penalty) is not as great as the sum of its parts

@ Suppose for example that the lot size recipe is not followed very precisely
(because, e.g., lots are chosen to be multiples of a box, only certain dispatching
times are feasible, etc.) and that as a result 40% discrepancies are expected
between the calculated and actual lot sizes. We have already seen that such
discrepancies can be expected to increase cost by about 10%.
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o Let us assume that one of the inputs (A or B) is suspected to be in error by a
factor of 2, which taken alone would also increase cost by about 10%. Would
it then be reasonable to expect a 20% cost increase? The answer is no; it
should be intuitive that the penalty paid by introducing an input error when
the lot size decision does not follow the recipe accurately should be smaller
than the penalty paid if the decision follows the recipe.

@ In our example, the combined likely increase is 14% [the square root of the
sum of the squared errors: 0.14 = (0.124-0.1%)/2]. Statistical analysis of error
propagation through models reveals similar composition laws in more general
contexts.
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Error Combinations (cont.)

@ The previous example illustrated how input and decision errors propagate. Al-
though model errors follow similar laws — the whole is still less than the sum
of the parts — for some approximate models the results are surprising. The
composed (data and model) error can be actually smaller than the data error
alone with the exact model!

@ This fortuitous (73 4-#9) phenomenon has a special significance because it
arises when certain discontinuous models with discrete inputs are approximated
by continuous functions and data*.

*Daganzo, C.F. (1987) "Increasing model precision can reduce accuracy” Trans.Sci. 21(2),
100-105.

BHHRBLRFE B#H Wk R %S 11 RERL 16 / 101



Problems with constraints

AE DM T ALY V< Vmax F1F0F EOQ BA M RAERE iR 2, R LILL
TR RGEER o e AR

@ The constrained EOQ solution is now presented rather briefly, before turning
our attention to the lot size problem with variable demand.

o If we find that v* > v« in solving the unconstrained EOQ problem, then the
solution is not feasible. Choosing v = vpax is optimal. Hence, the optimal
EOQ solution can be expressed as:

v¥ = min{+/B/A, Vmax}

and the optimal cost per item

. {2\/AB if \/B/A < Vinax

T ) Aviax + B/Vinax  if A/BJA > Vinax
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Problems with constraints (cont.)

@ Note that z* is an increasing and concave function of A, and also of B.
@ As A= c,/D/, z* is decreasing a function of [ and convex; the economies of
scale continue to exist for all ranges of D'.

@ The total cost per unit time, [Yz*, is proportional to D''/2 until the capacity
constraint is reached, and from then on increases linearly with . The critical

point is D, = (Vmax)?ch/cf*

o RN

*BZ B, MEMRAA A R, 2BIARGAEEH \/B/A = Vnax — A =

A=cp/D, T D, = (Vmax)?chn/cr
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Optimal EOQ cost as a function various parameters

Figure: Optimal EOQ cost as a function various parameters: (a) holding cost per item, A;
(B & B) (b) fixed motion costs, B; (B & A) and (c) demand rate, D'. Dashed lines are
the unused branches of z*
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@ The Lot Size Problem with Constant Demand
© The Lot Size Problem with Variable Demand
© Other One-Dimensional Location Problems
@ Accuracy of the CA Expression
© Generalization of the CA Approach
@ Network Design Issues
@ The Effect of Flow Scale Economies on Route Choice

@ Solution methods

@ Logistics systems and the nature
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Problem with variable demand (% & K T &5 EOQ 5 £1)

BT R LA AT KA, % FATRR 6 5 XTI T8 EOQ
o] A2
@ The demand pattern is characterized by a function D(t) that gives the cumu-
lative number of items demanded between times 0 (the beginning of the study
period) and t. The time derivative of this function D' (t) represents the variable
demand rate.

o We then seek the set of times when shipments are to be received (ty =
0,t,...,t,—1), and the shipment sizes (v, v1,...,V,—1), that will minimize
the sum of the motion plus holding costs over our horizon, t € [0, tmax]-

@ As previously, we also define as inputs to our problem a fixed (motion) cost
per vehicle dispatch ¢ a holding cost per item-time ¢, = ¢, + ¢;, and
a maximum lot size v,,. With an infinite horizon and a constant demand,
D(t) = D't, this formulation reduces to the EOQ problem examined in previous
sections.
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Solution when holding cost ~ rent cost

o If inventory cost is negligible, ¢; < ¢, then holding cost approximately equals
rent cost ¢, ~ ¢,. We have already mentioned that rent cost increases with
the maximum inventory accumulation®, and that otherwise the cost is rather
insensitive to the accumulations at other times. This property of holding cost
simplifies the solution to our problem.

@ Recall that given a set of n shipments, the motion cost during the period of
analysis, ¢sn, is independent of the shipment times and sizes'. The problem
is then to find the sets of shipment times and sizes that will minimize holding
cost.

*or x D'Hy B4R & 2k 89 it ) B %
21008 SH P& &t
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Solution when holding cost ~ rent cost (cont.)

@ A lower bound to the maximum accumulation at the destination is the size of

the largest shipment received. (Why?*)

@ This lower bound minimized when all the shipments are equal.(Why?")

Hence, the largest shipment — and, thus, the maximum accumulation — must
exceed or at least equal D(tmax)/n, the set is an optimal way of sending n
shipments with rent cost per unit time: ¢,D(tmax)/n*.

Each shipment is just large enough to meet the demand until the next shipment;
the consumption between consecutive receiving times, the same in all cases, is

D(tmax)/nS.

ARG REEH—ATRARRME, ShLZIR W5 & R4 A5
TEARERE, ERERKM TR ATHRE, R F M ET R

IBANEMEDL n REENLEEE Y H Dmax, WRBAFERMEFE = D(tmax)/n

Sk 6925 FRIFAL B LM R BLE 2 W 09 KT

BHHRBLRFE B#H Wk R %S 11 RERL 23 /101



Solution when holding cost ~ rent cost (cont.)

Clearly the following strategy is optimal:

o Divide the ordinate axis between 0 and D(tyax) into n equal segments and find
the times t; for which D(t) equals (i/n)D(tmax) for i=10,...,n—1. These are

the shipment times,

@ Dispatch barely enough to cover the demand until the following shipment.

One must now find the optimal n by minimizing the resulting cost
cost/time = ¢,[D(tmax)/n] + cAn/tmax]

D(tmax)) + ¢ n/D(tmax)]

cost/item = ( g, )(

where D is the average consumption rate D = D(tmax)/tmax
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Solution when holding cost ~ rent cost (cont.)

@ Note that the formulation is the EOQ expression with v = D(tmax)/n. The
solution now requires that n be an integer (there are constraints on v), but we
have already seen that any v close to the unconstrained v* is near optimal. As
a result, unless the time horizon is so short that n* = 1 or 2, the optimal cost
per item should be close to the cost with constant demand

@ If vinax < 00, the solution procedure does not change. It is still optimal to have
equal shipment sizes, but the number of shipments should be large enough to
satisfy: D(tmax)/N < Vmax. The solution is still of the same form, with v—!
restricted to being an integer multiple of D(tnax)-1.
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Solution procedure
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Solution when rent cost is negligible

B —A LG AT R, RPALE T Bk, 12 R AR AHRE BN R T Bk,
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Solution when rent cost is negligible

The combined origin-destination holding cost will also be proportional to the shaded
area:

o if the origin holding cost can be ignored <— if the origin produces generic items
for so many destinations that the part of its costs that would be prorated (#:
b 5~ BL) to each destination is negligible.

o if the origin holding cost is proportional to
the area. <— if the production strategy at
the origin is as described in figure below. The
total wait at the origin that can be attributed
to the shipping strategy must be similar to
that of the destination; i.e., it would also be
proportional to the shaded area

Op

Orders produced

Smooth
approximation
of orders sent
curve

sent curve

CUMULATIVE NUMBER OF ITEMS

TIME

o for typical passenger transportation systems

BHHRBLRFE B#H Wk R %S 11 RERL 28 / 101



Solution when rent cost is negligible

L—
T

@ When holding costs are proportional
to the shaded area, they are no
longer a function of n alone.

e For a set of points (ty...t,—1) to
be optimal, each line PQ must be
parallel to the tangent line to D(t)
at the receiving time? (point T in
the figure) R(t); items releived Q
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o We may verify that if this condition
is not satisfied, then it is possible L

L

to reduce the total shaded area by iT
. . . i |
either advancing or delaying the re- 2D(t;q) F-- _ ' !
ceiving time by a small amount. n | Dit); items |
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2Newell (1971) . |
i
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Solution when rent cost is negligible (cont.)

@ Unfortunately, the smallest shaded area - and thus the waiting cost - no longer
can be expressed as a function of n alone, independently of D(t).

@ Thus, it seems that a simple expression for the optimal cost cannot be obtained
for any D(t)
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Numerical solution — & 3 B} 3 EAL B 34

@ It can be formulated as a rolling horizon optimization problem in which a
shipment time, t;, is chosen at each stage (i = 1,...,n— 1), and where the
state of the system is the prior shipment time, t;_;. The optimization procedure
yields an optimum holding cost for a given n, zf(n), which can be substituted
for the first term of the following equation to yield n*.

cost/item = z(n) + cA(n/D(tmax))
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Numerical solution — Newell's method

The following procedure is less laborious and works particularly well if D(t) is
smooth, without bends or jumps (refer to figure for the explanation)

@ Choose a point P; on the ordinates axis and move across to Ty

@ Draw from P; a line parallel to the tangent to D(t) at Ty, and draw from T;
a vertical line. Label the point of intersection P,

Steps (i) and (ii) identify a point P> from a point P;. They should be repeated to
identify P3 from P,, P, from Ps, etc., defining in this manner a receiving step curve,
R(t). If R(t) does not pass through the end point, (tmax, D(tmax)), the position of
P; should be perturbed until it does.
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Numerical Solution — Newell’s method (cont.)
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Figure: Construction method for the cumulative number of items shipped versus time
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The Continuous Approximation Method

@ The CA method replaces the search for {t;} by a search for a continuous
function, whose knowledge yields a set of t; with near minimal cost
o It works well when DY(t) does not change rapidly; i.e., if D'(t;) ~ D/(tj;+1) for

all i. A byproduct is a simple expression and decomposition principle for the
total cost
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The Continuous Approximation Method (cont.)

@ Let us assume that an optimal solution has been found, and denote by /; the
i—th interval between consecutive receiving times: [ti_1,t;),i=1,2,....

@ Then divide the total cost during the study period into portions “cost;" corre-
sponding to each interval. That is, “cost;" includes the cost, cf, of dispatching
one shipment plus the product of ¢; and the shaded area for interval /;

cost; = cr+ C; X area;

o Clearly, the sum of the prorated costs will equal the total cost. Since D/(t) is
continuous, it should be intuitive that there is a point t} in each interval /; for
which the area above D(t) satisfies:

area; = %(t; — t1)?D(8)*

YRR ERETERBRE ¢ RRAAG, L PHMRARD t— 1, R4 D (¢)(t—
ti-1)
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The Continuous Approximation Method (cont.)

AL [tiog, t) RIA — A EZAG 12
o Consider the triangle defined by the horizontal and vertical lines passing through
a point P; in the figure and a straight line passing through T; with a slope that
yields “area;" for the triangle; i.e. slope D/(t}).

@ Since such a slanted line must intersect D(t) (otherwise the areas above D(t)
and above the slanted line could not be equal) there must be a point between
T; and the point of intersection where the two lines have the same slope. The
abscissa (444 4%) of this point is t.

Therefore we can write:

t;
area; — %(t 5 )RD(¢) = f %(t 4 )D(¢)dt
ti—1

BHHRBLRFE B#H Wik RGSM 11 RERL 36 / 101



The Continuous Approximation Method (cont.)

. —

HEADWAYS

If we now define Hs(t) as a step function such that Hs(t) = t; — t;—y if t € I; (see
the figure above for example), then the cost per interval can be expressed as:

cost; = Lf [H:(t) + C"st(t) D'(t)]dt.

i—1
Note that this is an exact expression.
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The Continuous Approximation Method (cont.)

If we now approximate D/ (t;) by D' (t) — which is reasonable if DY(t) varies slowly —
the total cost over the whole study period can be expressed as the following integral:

cost; = Jti [H:(t) + Ci/-g(t) D' (t)]dt.

i—1

We seek the function H(t), which minimizes the equation above. Unfortunately,
this is akin to determining the {t;} themselves. A closed form solution can be
obtained if Hy(t) is replaced by a smooth function, H(t). That is:

cost; ~ Lmax[HC(;) + C"’Z(t) D' (t)]dt.

0

Now, instead of finding Hs(t), we can find the H(t) which minimizes the new
equation - a much easier task - and then choose a set of shipment times (i.e.,
Hs(t)) consistent with H(t).
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The Continuous Approximation Method (cont.)

Clearly, the H(t) which minimizes the RHS minimizes the integrand (4 #251) at
every t; thus:

H(t) = [2c/ (D' (£)]"2.

This is the time between dispatches (headway) for the EOQ problem with constant
demand D' = D/(¢t).

A set of shipment times consistent with H(t) can be found easily since H(t) varies
slowly with t.
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The Continuous Approximation Method (cont.)

The figure suggests how this can be done systematically.

@ Starting at the origin (point t) draw a
45°line and find a horizontal segment from
a point on the vertical axis, such as P;
in the figure, to the intersection with the
45°line.

@ The elevation of P; should be such that
the area below the segment equals the
area below H(t).

HEADWAYS

_o

@ The abscissa of the point of intersection is
the next shipment time, t;. This locates In practice one does not need to

t1, given to. be quite so precise, since we have
@ The construction is then repeated from t; already seen that small deviations
to locate tp, from t,, to locate t3, etc. from optimality have a minor effect.
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The Continuous Approximation Method (cont.)

Now we may calculate the total cost given the optimal H(t).

tmax

Total cost ~ J [2cicD (£)]Y/2dt.

to

The integrand of this expression is the optimal EOQ cost per unit time if D' = D/(t).
Note that the integrand in the equation can be written as

[2¢ice/ D' (£)]2[ D (1)dt]

where the first factor represents the optimal cost per item for an EOQ problem with
constant demand, D' (t). The average cost per item (across all the items) is obtained

by dividing the total cost by the total number of items D(tynax) = S;’)“ax D' (t)dt.
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The Continuous Approximation Method (cont.)

The result is: \
§o [2ciciD' (1] 2dt

(= D (£)dt

to

(cost/item)* =

@ In practical terms the (cost/item)* expression indicates that the average opti-
mal cost per item can be obtained by averaging the cost of all the items, as
if each one of these was given by the EOQ formula with a (constant) demand
rate equal to the demand rate at the time when the item is consumed*.

@ The total cost expression indicates that, given a partition of [0, tmax] into a
collection of short time intervals, the optimum cost can be approximated by
the sum of the EOQ costs for each one of the intervals considered isolated
from the others*.

@ These equations are so simple that they can be used as building blocks for the
study of more complex problems in following lectures.

This is one of the attractive features of the CA approach; it yields cost estimates

i n define, a detailed solution to the problem.
*H b 09 AT RARTT BT AT BT A s AR AR, mA R AR A EOQ A XA
Z B SR AR AT A BALAR .
*E A R R R ARIL [0, tmax] Z AR 5 R E TR R, R ERATBIEHA
IR B B ey EOQ Ay A X Fe il
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The Continuous Approximation Method (cont.)

@ The CA approach can also be used to locate points on any line (time or
otherwise) provided that the total cost can be prorated approximately to (short)
intervals on the line, while ensuring that the prorated cost to any interval only
depends on the characteristics of said interval. In the previous discussion, the
integrand in the cost equation cost; ~ S;’)“”[H?t) + C"';(t) D/'(t)]dt is the prorated
cost in [t,t+ dt), which does not depend on the demand rate outside the
interval

@ The CA approach can also be used to locate points in multidimensional space,
when the total cost can be expressed as a sum of neighborhood costs dependent
only on their local characteristics. Newell (1973) argues that the CA approach
is comparatively more useful then, because in the multidimensional case it is
much more difficult for exact numerical methods to deal with the complex
boundary conditions that arise. Because the CA approach will be used in
forthcoming lectures repeatedly, the next section discusses two additional (one-
dimensional) examples.
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Bus departure schedule problem

The CA technique was originally proposed to find a near-optimal bus departure
schedule from a depot (Newell, 1971).

Given the cumulative number of people D(t) demanding service by time t, the fixed
cost of a bus dispatch cf, and the cost of each person-hour waited ¢;, the objective
was to minimize the sum of the bus dispatch (motion) and waiting (holding) costs.
With an unlimited bus capacity, this problem is almost identical to the one we have
just solved; except for D(t), which now represents the cumulative number of people
(items) entering the system and not the number leaving. The cost equations still
hold.
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Freight terminals location on a distance line

@ This problem locates freight terminals on a distance line between 0 and dnay.
This interval contains origins, which send items to a depot. The distance line
extends from the origin, O, to a depot, located at d = d> Amax-

@ The flow of freight (number of items per day) that originates between O and d
is a function of d, D(d), which increases from 0 to vy Items are individually
carried to the terminals at a cost ¢, per unit distance per item. Each day a
vehicle travels the route collecting the items accumulated at each terminal and
takes them to the depot.
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The access cost

@ The motion cost for this operation has three components: the handling cost
at the terminals, assumed to be constant and therefore ignored, the access
cost to the terminals, and the line-haul cost of operating the vehicle from the
terminals to the depot. #Js%: ML MG LR A, TTALAF Rt Lk, 7|
BAR A B TR RA, B AL A A5 3] B 49369 %

@ The access cost is given by the product of ¢/, and the total item-miles of access
traveled per day; it increases with the separation between stops.
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The line-haul cost

The line-haul cost has the form of

line-haul cost/day = c5(1 + ns) + ca(d) + c.(Viot)

@ ¢, is the cost attributable to each trip, regardless of distance and shipment
composition; it includes the cost of stopping the vehicle and having it sit idle
while it is being loaded and unloaded. Think of it as the fixed cost of stopping,
independent of what is being loaded and unloaded.

@ n, is the number of stops (excluding the depot)

@ ¢y is the cost of vehicle-mile. It is the vehicle cost (including the driver) for
distance traveled regardless of the vehicle's contents;

e C., represents the cost of carrying items. It represents a penalty for delaying the
vehicle while loading and unloading the items, as well as the cost of handling
the items within the vehicle. v is the total size of the shipment arriving at
the depot.
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The line-haul cost (cont.)

Note that the line-haul cost does not depend on the specific stop locations and that
in contrast to the access cost, it increases with ns.

line-haul cost = ¢® + c.ns

where c° is a constant that will be ignored for design purposes.

As the problem has been formulated, with one trip per day, the sum of the holding
costs at all stops can be ignored - consideration reveals that the sum is constant.
Pipeline inventory costs do depend on the decision variables (they should increase
with ns) but for cheap freight the effect is negligible. Thus, all inventory and holding
costs are neglected.

The stops will be located as the result of a trade-off between line-haul and
access costs. Without this simplification, which is inappropriate for passenger
transportation, the problem is equivalent to the transit stop location problem.
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terminals (at points di, d», and d3)
.;E (d) and a curve, R(d), depicting the num-
g ber of items in the vehicle as a function
§§ of its position. This curve increases in
°§ steps at each terminal location. The
vepor size of each step equals the number of
§ 5 items collected.
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To minimize access (and total) cost each item is routed to the nearest terminal, and
as a result the step curve passes through the midpoints, M;, shown in the figure.

BHHRBLRFE B#H Wk R %S 11 RERL 50 / 101



BE—T, AL EZFZE TG L2

Viot =D @may)

HHE T EAAT R

wi AR 28 TR S-S . e
£y [mo, mi] £ M 885 H 4 & dy
28 2 A, [my,mp] SEE A AR
W E b AP EE, B AR

9K 22 BE B B A B R

DISTANCE, d

The coordinates of M; are m; = (d; + di+1)/2 and D(m;); with mg = 0 and m,, =
dmax
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Let us see how the total cost
can be prorated to short inter-
vals, by considering the partition of
(0, dmax] into the following intervals
surrounding each terminal: / =
(O, ml], /2 = (ml, fT72]7 ey I,,5 =
(mp,_,, dmax]- Each interval, /;, adds
an access cost proportional to the
daily item-miles traveled for access
to terminal /.

This is given by the shaded area on the two quasi-triangular segments next to the

location of the terminal, (area);, thus

access cost; = (area);cy.

BHHRBLRFE B#H
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For slowly varying D(d), the access cost can be rewritten as:
1 2
access cost; ~ Z(m,- —m;_1)°D'(d;) ).

Since each terminal adds ¢, to the daily line-haul cost, the share of the total cost
prorated to /; is:

c
(Total cost per day); ~ cs + Id(m,- —m;_1)?D'(d)).
Since D'(d) ~ D/(d;) for d € I; (we stated that D'(d) varied slowly), the above
expression can be approximated by:
mj C5

(Total cost per day); ~ J {(——— + %(m; — m;_1)D'(d)}dd.

mi_; Mi— Mi-1
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If we now let s(d) denote a slowly varying function such that s(d;) = m; — m;_
(the function, used later to locate the terminals, indicates the size of a terminal's
influence area depending on location), then we can rewrite the last expression once
again, using s(d) instead of mi — m;_1:

mj C/
(Total cost per day); ~ J {i +

Ay T3 (@)D ()dd.

The total cost for the system is then:

(Total cost per day) ~ J-dmax{ E:;) + %(s(d))D’(d)}dd.
o 'S
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Analytical form of EOQ

The least cost s(d) minimizes the integrand at every point; given its EOQ analytical
form, we find

S q1)2
s(d) ~ 2] 17=.
caD'(d)
Note that if D varies slowly, s(d) will vary slowly as we had assumed.
The expressions for the minimum total and average (per item) cost as follows

Amax
(Total cost per unit time)* ~ f [csc, D (d)]¥2dd
0
dma)(
cost per item* ~ f
0

[csd, D (d)]Y2 D/ (d)dd/ fd D' (d)dd
0
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Locate the terminals

@ To locate the terminals, one first divides (0, dmax] into non-overlapping intervals
of approximately correct, length I, I, etc...., by starting at one end and using
the EOQ formula repeatedly.

o If the last interval is not of correct length, then the difference can be absorbed
by small changes to the other intervals.

® If dmax is large (so that there are at least several intervals), then the final
partition should satisfy s(d) ~ m; — m;_; if d € I;, and the approximations
leading to the equations should be valid.

@ With the influence areas defined in this manner, the terminals are located next.
They should be positioned within each interval so that the boundary between
neighboring intervals is equidistant from the terminals.

@ For a general sequence of intervals (e.g., of rapidly fluctuating lengths) this
may be difficult (even impossible) to do, but for our problem with |/ ~ |/i11]
the best locations should be near the center of each interval; in fact little is
lost by locating the terminals at the centers.
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@ Although a systematic analysis of its errors has not been reported, experience
indicates that the CA approach is very accurate when the descriptive charac-
teristics of the problem (D/(t) in the text's examples) vary slowly as assumed.

@ The approach is also robust. It is effective even if the variation in conditions
is fairly rapid —in our case, accurate results are obtained even if D' (t) varies by
a factor of two within the influence areas. This conclusion is not surprising in
light of the EOQ robustness discussed in the previous lecture

@ When conditions are unfavorable, the CA method can both over- and under-
predict the optimal cost. The textbook provides two examples identify said
conditions, with the first example illustrating overestimation and the second
underestimation. The basis for comparison will be the exact solution, which
for our problem can be obtained readily.
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Recall the construction method

\
Dltpex) [~ ———————————-——> Recall our previous construction method
| i for the cumulative number of items
0 PSI ' ! shipped versus time
"é_‘»g i i @ Choose a point P; on the ordinates
gg Lt /o ! axis and move across to T;
ek R /. i e Draw from P; a line parallel to the
‘ ! | ! tangent to D(t) at Ty, and draw
! ! : from T; a vertical line. Label the
A A } point of intersection P; .
| L
t0 'I 1Z 'max
TIME

R F P ARG T, P AR AR 28 ) AR F A A R PR B
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Construction method for the terminal location problem

o Given # of stops n;, for a set of locations to be optimal the line D(d) of the
distance figure must bisect in two equal halves every vertical segment of R(d).
Otherwise, the terminal (e.g., terminal 3) could be moved slightly to decrease
access cost. The optimal solution can then be found by comparing all the
possible R(d) with the above property.

For a given di, draw a vertical step that is bisected by D(d), and move across
horizontally so that the horizontal segment is also bisected by D(d). This
identifies d». Repeat the construction to find ds, ds, etc. (Only those values of
dy for which the last vertical segment is bisected by D(d) need to be considered
seriously.) The optimal solution corresponds to a d; which minimizes the sum
of the stop cost and access cost.

@ The procedure is so simple that it can be implemented in spreadsheet form*.

*The user selects di and the spreadsheet returns the graphs, and the cost; it is then easy to
find the solution either interactively or automatically with the computer.
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Example 1: Overestimation

‘ Terminals are to be located on two adjoining re-
D(Gyy) {=========== ===~ ; gions with high and low demand. The left fig-
i ure depicts a generic piece-wise linear cumula-
w ! tive demand curve of this type. The coordinates
5% | of the break-point (distance, item number) are
SE P, E given by parameters “a" and “b”. They must
= ! be consistent with the specified values for dpax,
o ! D(dmax), Dy and Dj. For this problem the con-
i tinuum approximation approach yields
blocmmms .
> i C* ~ (cscy)?{ay/ D D,
. . - TC" ~ (cscq)"“{ar/ Dy + (dmax — a) 2}
DISTANCE
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Parameters

A possible set of parameters is dpax = 500, D(dmax) = 1700, 0 = 1,0, =5,a =
b =200, c, =1and c¢; = 160,000. This choice has been made because a systematic
analysis shows that it produces the largest overprediction error in%age terms. The
predicted cost is: TC* = 348, 328.

In actuality the least possible cost is 8% smaller. It arises when a single terminal is
located at d = 330. The reader can verify that the exact access cost for this location
is 160,500 units. Since the terminal cost is 160,000 units (for one terminal), the
grand total is 320,500 < 348,328.
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Insights from the example

This rather extreme example illustrates that the CA approach can overestimate the
optimum cost.

@ To understand why this happens let us decompose the CA costs into its com-
ponents. Note first that the ideal spacing between terminals predicted by the
CA method with is:

s(d) = 2 % [160,000/(1 # 1)]*/2 = 800 in the low demand section, and
s(d) = 2 % [160,000/(1 * 5)]*/? ~ 357 in the high demand section.

@ The CA access cost is calculated as if the average access distance was s(d)/4 =
200 in the low demand section and 89.25 units in the high demand section.
Since there are 200 items in the low density region and 1500 in the high density
region, the total CA access cost is approximately: 200 x 200 + 89.25 x 1500 =
173, 875.

@ The CA stop cost (line-haul cost) is calculated by integrating the density of
terminals over the service region, (200/800+-300/357) ~ 1.09, and multiplying
this result by the cost of a terminal: 1.09 x 160,000 = 174, 400.

@ The grand total is therefore: 173,875 + 174,400 = 348,275 ~ 348, 328.
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Insights from the example (cont.)

It turns out, however, that just a single terminal in the high density region can
serve both, the low density points with an average distance barely greater than the
CA access distance, and the high demand section with an average access distance
considerably inferior to the corresponding CA distance. For our chosen location
(d = 330) the actual average access distances are: 230 units for the low density
section (200 with the CA method)and 76 for the high density section (89 with CA
method). Since we are using only one terminal, the final cost is lower.

The overprediction effect arises because the demand curve varies significantly and
very favorably between the terminal and the edge of the service region, and the CA
approach does not exploit this variation. The variation is so favorable that it allows
a terminal provided for the high density points to double up efficiently as a terminal
for the low density points.

Favorable conditions are unusual, however. When the demand does not vary rapidly
the CA approach consistently underestimates demand.
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Example 2: Underestimation example

@ By its nature, the CA approach ignores that the number of terminals must be
an integer; any situation with a finite region size (or time horizon) will exhibit
this error type.

@ To exclude the overprediction error type illustrated by example 1, the demand
per unit length of region is set constant: D'(d) = D’. This also allows closed
form comparisons to be made.

@ The CA solution is TC* = 4/csc’d\/ﬁdmax. Without losing generality, we
choose the units of distance, item quantity and money so that dmax = 1, D(dmax) =
1and ¢; = 1. Thus, D' = 1 and only the parameter ¢, remains. The above
expression becomes: TC* = /¢,

@ If the exact optimal solution has ns terminals, the distance line will be parti-
tioned into ng intervals of equal length: [; = ((i— 1)/ns, i/ns]. The total cost
is then

Cy

4n,

which is an EOQ expression in ns*. Its minimum over ns = 1,2,3, ... is the
optimal cost.
HoRARNERA, FIRATEREHARE

BHHRBLRFE B#H Wk R %S 11 RERL 65 / 101

TC(ns) = ns + 2ns{(%)2%} = ns+




@ This least cost will always be greater or equal to \/?d because it is the minimum
of ns+ 4L with unrestricted n obtained for n¥ = (c,/4)V/2.

@ Clearly, the underprediction will be most significant when n¥ is close to an odd
multiple of 0.5, or close to zero. We have tested the sensitivity of the EOQ
cost expression to errors in the decision variables, which also quantifies this
underprediction; as n} increases the underprediction quickly vanishes

e Once ¢, > 16 (n¥ is greater than 2) the difference is below 1%. If ¢, > 4
(the value at which n¥ = 1) then the maximum difference stays below 6%.
Although for smaller ¢ the difference can grow arbitrarily large as ¢, — 0,
that is not the case that is likely to be of interest; the large spacing between
terminals recommended by the CA method (much larger than dnax) indidates

that operating line-haul vehicles is probably an overkill ( % $t—28) .

o If it were of interest, and a terminal had to be provided, terminal had to
be provided, one could force the solution to the CA approach to satisfy the
constraint ng > 1. The next section will discuss how more involved constraints
can be accommodated within a general CA framework.
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@ Although exhibiting different errors types, both examples shared a common
trait when their errors were largest: the ideal terminal spacing in an interval
with constant demand exceeded the length of the interval; i.e., demand varied
significantly within the spacing.

@ Errors arose because this property violates the stated requirement for the CA
approach: DY(d) should vary slowly over distances comparable with s(d). Con-
versely, the numerical results prove that an error below one% results if D(d) is
piece-wise linear with segments at least three times as long as each s(d).

@ Thus, any demand function that can be approximated in this manner should
also yield accurate results.
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@ The CA method can be applied to more complex problems - even problems
that defy exact numerical solution. In forthcoming chapters it will be used to
locate points in multidimensional (time-space) domains while satisfying deci-
sion variable constraints.

@ All that is needed is that the input data vary slowly with position, either in one
or multiple dimensions, that the total cost can be expressed as a sum of costs
over non-overlapping (small) regions of the location domain, and that these
component costs (and constraints) depend only on the decisions made in their
regions. If this is true, the decomposition principle holds and the CA results
approximate the optimal cost accurately.
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Constraints

As a one-dimensional illustration, let us return to the inventory control problem,
and let us assume that there is a capacity constraint on shipment size:

D(ti) - D(ti—l) < Vmax

This constraint has a local nature because it only involves quantities determined by
events close to the time of shipment; i.e., by two neighboring dispatching times and
by the amount of consumption between them. For any time t it should be possible
to write the constraint approximately as an inequality including only variables and
data specific to time t.

BARGHEZELRE: BREENGEAENERE R Z DT RAME
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EOQ formula

Recalling the definition of Hs(t)*, and using the slow-varying property of D/(t), we
can write:

D(t;) — D(ti_1) ~ Hs(t)D'(t) ~ H(t)D'(¢)

and the constraint can be replaced by the approximation based only on conditions
at t

Ht)D'(t) < Vinax, or  H(t) < vimax/D'(t)

which must be satisfied for all t.
An approximate solution to our problem, thus, is an H(t) that minimizes the total
cost subject to this constraint. The optimal H(t) is the least of: (i) (2¢¢/¢;D'(t))/?,
and (ii) Vmax/D'(t). Letting Wx denote the increasing concave function {x'/? if x <
1; or [1+ x]/2 if x> 1}, we can express the minimum cost per unit time concisely
in terms of the dimensionless quantity, 2c/D/(t)/(c;jv?

max)'

CiVmax V{2 (1) /(ciV2,0 )}

¥ max

*Hs(t) as a step function such that Hs(t) = t; — tj_y if t€l;
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Total cost and average cost

Integrated from 0 to tmax, this expression approximates the optimal total cost.
Note that when the argument of W is less than one, as would happen if vpayx is very
large, then the expression becomes [2c;iciD’ (t)]*/2. An average cost per item can
also be obtained in a similar way; its interpretation as a cost average across items
(calculated as if each item was part of a problem with constant conditions, equal
to the local conditions for the item) is still valid. In practical cases, a per-item cost
estimate can be obtained easily with the following two-step procedure:

@ Solve the problem with constant conditions for a representative sample of items
and input data,

@ Average the solution across all the sampled items to obtain the result.

Note that the cost estimate can be obtained even without defining the decision
variables in the first step.

BHHRBLRFE B#H Wik RGSM 11 RERL 72 / 101



Practical Considerations

@ While for simple problems, such as the one solved above, the solution can
be easily automated, more complex situations may benefit from decision sup-
port tools with substantial human intervention. The following two-step hu-
man/machine procedure is recommended:

e recognizing that its recommendations may need fine-tuning adjustments, the
CA (or other simplified) method is applied to a basic version of the problem
without secondary details;

e trained humans develop implementable solutions that account for the details,
perhaps aided by numerical methods that can benefit from the output of the
first step.

@ In some cases, when time is of the essence humans alone may have to carry
out this second step because efficient numerical methods capturing peculiar
details may not be readily available, and developing them may be prohibitively
time consuming.
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@ Even without time pressures, if the details are so complex (or so vaguely un-
derstood) that they cannot be quantified properly, pursuing automation for
the fine-tuning step would seem ill-advised. Fortunately, this is not a serious
drawback, significant departures from ideal situations should not increase cost
significantly, leaving humans considerable latitude for accommodating details.

@ The cost of the two-step procedure (fine-tuned by hand) is compared to the
ideal cost without restrictions, and (optionally) to the exact optimal cost ob-
tained with dynamic programming.

@ We may find that the fine-tuning step often identifies the exact optimum, and
when it does not, the difference between the two-step and the exact optimal
costs is measured by a fraction of a%age point. Furthermore, the two-step
and one-step (or ideal) costs are very close; of course, provided that n¥* is not
greater than 50.
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Network Design Issues

In all the scenarios discussed so far, the items followed a predetermined path. Real
logistics problems, however, often involve the choice of alternative routes (e.g.,
alternative ways of shipping) between origins and destinations, in addition to the
choice of when and how much to dispatch. In some instances one may even be
interested in whether certain routes should be provided at all; or even in the design
of an entirely new physical distribution network.

We also found that there were economies of scale in flow; i.e., the optimal cost per
item decreased with D). In the following lectures, we will have to consider logistics
problems with multiple destinations, where an item's route is not predetermined and
cost decreases with flow. We discuss here some key features of these problems, and
conclude this lecture with a comparison of detailed and non-detailed approaches for
logistic system design.
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flow = X3
cost=2Z3
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@ A simple example with one origin and two destinations effectively illustrates
the properties of optimal system designs with and without flow economies of
scale.

@ The origin, O, produces items of type i(i = 1,2) for destination P; at a constant
rate, given by the parenthetical (# 5 4J) numbers in the figure: D), = D, = 4
items per unit time. The combined production rate at the origin is D} + D, = 8
items/unit time. The arrows in the figure depict possible shipment trips; these
transportation links are numbered 1, 2, 3. While all the items traveling to Py,
must travel directly between O and P;, the items traveling to P, may go either
directly or via P;.

@ Let us assume that a fraction (to be decided) x, of the items for P, are sent
via Py and the rest are shipped directly. This establishes a flow x; = 4(1 + x)
on link 1 (OP;), a flow x3 = 4x on link 3 (P1Ps) and a flow x, = 4(1 — x) on
link 2 (OP,).
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We also assume that the total cost on the network can be expressed as a sum of
link costs, and that these depend only on their own flows. This is a reasonable
assumption if no attempt is made to coordinate the shipping schedules on the three
links, as then the prorated cost to link should be close to the EOQ expression with
demand rate equal to the link flow. Thus, if we let z;(x;) denote the cost per item
on link i when the flow is x;, the total system cost per unit time is:

With economies of scale, the functions x;zj(x;) increase at a decreasing rate (are

concave) as in

3
TC = Z X,'Z,'(X,').

i=1
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Economy of scale

With economies of scale, the functions x;zj(x;) increase at a decreasing rate (are
concave). Because the x;'s are linear in the split x, the total cost is a concave
function of the split — this (concave) dependence of cost on splits (decision variables)
also holds for general networks. Suppose, for example, that

I v /2

-1
z1=x '",22=3x,"'", and z3 = 1;
1/2 1/2
X121 = X1/ , X0Zp = 3X2/ , and xpz3 = x3;
Then, as a function of x, the total cost is calculated
as: J

TC=2(1+x)Y2 +6(1—x)Y2 + 4x

©
I

The total cost is a concave function of the split,
x. For our data the optimal solution is x* = 1 —
everything should be shipped through P;. The total 7
cost is 6.8. Although shipping everything direct may

TOTAL COST
[

be better for different data, clearly one would never L
want to split the flow to P, among the two routes SPLIT, X
(OP2 and OP1P2)
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@ A similar “all-or-nothing” principle holds for networks with multiple ODs if the
total cost is a concave function of all the link flows. In that case all the flow
from any origin to any destination should be allocated to only one route. This
is not difficult to see: one can define a split between any two routes joining
an origin and a destination, and since the link flows are linear in that split, the
total cost is concave in the split; thus, only one of the routes can carry flow.
Networks with diseconomies of scale behave in an opposite manner.

@ In that case the total cost function is convex in the splits and there is an
incentive to spread out the flow among routes. In fact, if for a one origin and
one destination network, there exist several routes with identical cost functions
(with dis-economies); it is not difficult to prove that the total flow should be
evenly divided among all the routes.
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@ Networks with flow economies of scale also respond in a different manner to
changes in conditions. While, with diseconomies, a small improvement to one
of the routes would lead to a small change in the optimal flow distribution,
with economies, the optimal flows either stay the same or change by a discrete
amount. This can be seen with the example. Aslong as z3 < [2—2"%2] ~ 1.3,
x* equals 1, but if z3 is increased beyond this value ever so slightly, the solution
jumps to xx = 0.

@ This is typical of concave cost problems: minor changes to the input data
can induce large changes in the optimal solution. Fortunately, the cost does
not behave in such manner; despite the jump in our example the cost is a
continuous function of zs.

8 if z3<2—2"12

TC* =
812 4 4z ifzz>2—2"12

BHHRBLRFE B#H Wik RGSM 11 RERL 83/ 101



B 3& |Outline

@ The Lot Size Problem with Constant Demand
© The Lot Size Problem with Variable Demand
© Other One-Dimensional Location Problems
@ Accuracy of the CA Expression
© Generalization of the CA Approach
@ Network Design Issues

@ Solution methods

@ Logistics systems and the nature

HhRBRE B MARGHM 1-1 BRiE A%

84 / 101



The nature of the solution is not the only difference between networks with economies
and diseconomies; the way to find it is also different. While networks with disec-
onomies are well behaved optimization problems without local minima that are not
global, networks with economies are not.
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Local searches

Except for technical details, all local search algorithms work in the same manner.

@ The total cost is evaluated for an initial feasible solution, described by a set
of variables that uniquely identify the decisions; e.g., the set of splits for all
origin destination pairs.

@ A small cost-reducing perturbation to the feasible solution (e.g., a differential
change to the splits) is then sought. If not found, the search stops because
the initial solution is a local minimum; i.e., a solution that cannot be improved
without substantial changes. Otherwise, an improved larger perturbation ob-
tained from the original small perturbations is identified, and then used to
construct a new improved feasible solution.

The process is then iterated (seeking small cost-reducing perturbations to the new
solution, etc.) until no significant improvements result.
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Problems of local search algorithms

@ Although local search algorithms can be used to find near optimal solutions
for large detailed networks with convex costs, the same procedures fail with
concave cost networks. The task is then much more complicated, and the
network sizes that can be handled by numerical methods much smaller — %}
F R 4690 AR 2, BHILE LT ARG REMZAMR,; 122 RER
T A AFR K

@ Local search techniques work acceptably for networks with scale diseconomies,
because in those instances any local minimum is a global minimum. Unfortu-
nately, this is not the case with economies of scale. Our simple problem has
two local minima: x = 0 and x = 1. If a local search algorithm is applied to
our example, any starting solution with x < 0.61 (the maximum in the figure)
will converge suboptimally to x = 0.

@ While for our simple example this can be corrected simply by starting with dif-
ferent X's, the task is daunting for large, highly detailed networks. In that case,
the number of potential traps for a local search —all local minima regardless of
cost —increases exponentially with the amount of detail.
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An example

The items from a large number N of origins are shipped to one destination using
two transportation modes (1 and 2). We use x; to denote the split of production
from origin i sent on mode 1, and assume that (to satisfy an agreement with the
providers of type-1 transportation) each x; must satisfy x; > h; for some constant
h; > 0. Transportation by mode 2 is assumed to be more attractive, but limited in
capacity; that is, the sum of the x;'s must exceed a value h.

For a set of splits to be feasible, thus, the following must be true:

N
Dixi=h, and b < x; < 1,Vi
i=1

We seek the set of feasible splits that minimize the total cost, or equivalently the
penalty paid because not all the items can be shipped by mode 2.
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Solution of the example

The penalty paid for each origin is assumed to increase with x;, except at certain
values where a fixed amount ¢; is saved — perhaps because shipments can then
be multiples of a box, requiring less handling*. To simplify the exposition, let us
assume that there is only one such value §; for every origin, and that away from
this value the penalty equals x;; otherwise the penalty is x; — €;. If we define €;(x))
to be: ¢; if x; = §; and 0 otherwise, then the combined penalty for all the origins
can be expressed as:

N
Z[Xf — €i(xi)]

Note that each one of the terms in this summation for which §; > h; exhibits two
local minima in the range of feasibility [h;, 1] : x; = h; and x; = §;.

AL AL AL AE ST N R — A 7 gt 3 K mdg X, AL i) F T XA R R,
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Solution of the example

Any combination of x's, each equaling either h; or §;, and satisfying the constraints
is a local minimum, which could stop a search. If the §; and the h; are uniformly
distributed between 0 and 1, and h is small, there will be O(2"/?) local optima.
With so many traps, local search algorithms are doomed to failure for this problem
—not because the penalty is discontinuous, but because it is not convex. A different
method must be used.

Certainly, one could search exhaustively over all the possible solutions with a combi-
natorial tool such as branch and bound, but these methods can only handle problems
of small size —typically with O(102) decision variables or less.
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Heuristic method

Alternatively, one could try to exploit the peculiar mathematical structure of the
total penalty —or whichever problem is at hand —to develop a suitable algorithm. If
successful, the approach would find a solution with all its detail. In our case, the
optimization problem can be reduced to a knapsack problem that can be solved
easily; in other instances it may be possible to decompose the problem into a
collection of small easy problems. Very often, however, a simple solution method
cannot be found.

In our case, this would happen if there were more than one (¢;, d;) for each origin.
Traditionally one then turns to ad hoc( 4§ % B #949) intuitive solution methods
(known as heuristics) which one hopes will yield reasonable solutions.
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Simplifying the problem

@ There is also another approach. If while inspecting the formulation, or even
better in the process of formulating the problem, one realizes that certain de-
tails are of little importance one should leave them out. Our example illustrates
how removing minor details can turn a nightmare into an easy problem.

o If the ¢;'s are so small that the ¢;(x;) can be neglected, then the objective
function reduces to ) . x;. Former sources of difficulty, the €; and &; no longer
enter the formulation. With less detail, the problem becomes well behaved
(convex), and even admits a closed form solution; e.g., if },_; hj > h then the
optimal splits are x; = h; and the total cost is >,,_; hi = Nh.

@ Note that the optimal cost is given by an average (there is no need to know
precisely each individual h; in order to estimate the optimal cost), and that
the optimal solution can be described with the simple rule “make every split as
small as possible”, which can be stated without making reference to the h;'s.
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In the following lectures we will seek solutions to logistic problems using as little
details as possible, describing (as in the example) the solution in terms of guidelines
which are developed based on broad averages instead of detailed data. We recognize
that the solutions obtained from such guidelines may benefit from fine-tuning once
detailed data become available; but also note that incorporating all the details into
the model early will increase the effort for gathering data and may even get in the
way of obtaining a good solution.
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Similarity of the logistics system with trees

Observation of mother nature's logistics networks suggests that many logistics sys-
tems can be designed in this manner. Trees can be viewed as a logistic system for
carrying nutrients from the soil to an above-ground region (the leaves) to meet the
sun’s rays. While every individual tree of a species is distinct from other individuals,
we also see that the members of a species share many common characteristics on
average. There is order at the macroscopic level. This is not surprising, since mem-
bers of the species have adapted to similar environmental conditions, also filling the
same niche (X448 F]4£ A) in the eco-system.
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Similarity of the logistics system with trees

The detailed characteristics of an individual tree are (like our logistic systems)
developed from two levels of data in two different ways:

@ Members of the same species share a genetic code, which has evolved in re-
sponse to the typical or average conditions that can be expected. This code is
analogous to the guidelines of a simple model; e.g., “make each split as small
as possible.”

@ In response to the detailed conditions of its location, a tree develops an indi-
viduality within the guidelines of the genetic code, better to exploit the local
conditions. This would be analogous to the fine tuning that could have taken
place if the ¢;, h;, and d; had been given in our example.

The same could be said for other logistic systems encountered in nature, such as
the circulating and nervous systems of the human body.
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Similarities

On further inspection we notice that, not only average characteristics, but some
specific traits are also the same for all individuals, (e.g., some tree species have
always one trunk, all humans have one aorta artery (£ #h18k) , etc.). It is as
if nature had decided that these items of commonality are optimal for almost any
conditions that can be encountered; therefore, that part of the design is not open
to fine tuning. Perhaps the same can be said of logistics systems.

The logistics systems of nature also have economies of scale. It takes less energy to
move a certain flow through one single pipe than through two pipes with one-half
the cross section. As in our networks with concave costs, there is an incentive to
consolidate flow into single routes that can handle great volumes efficiently. Nature
has responded to this challenge by evolving hierarchical systems of conveyance, such
as the three hierarchy network.
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The ‘logistics system’ of a tree

LEAVES
(CUSTOMERS)

ROOT
(DEPOT)
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Scientists have begun to realize that apparently very complex (“fractal”) structures,
such as a fern leaf (B £A 4 49+ F), can be replicated and/or described with
just a few rules and parameters. For the example of the figure, the separations
between “nodes” (e.g., Al and A2) for each hierarchy might be found to be relatively
constant, perhaps varying with the distance from the root, as might be the number
of branches at every node and the relative size of the main and secondary branches
at nodes of the same hierarchy. The latter may also vary with the distance from
the “root."*

A physical distribution network should probably be organized in a similar way with
the root becoming the depot, the leaves the customers, and the nodes intermediate
transshipment centers or terminals. Physical distribution networks that serve similar
purposes, just as in nature, should likely share the same hierarchical organization
and overall traits even if the specific details differ. As in nature, it should be
possible to describe their near optimal configuration with just a few simple rules
and parameters.

AN EZ 6 B E T RE A B AR IES T, HAT S LKA LN
B K 4G E R ZA9ABSE K o 2IABMAAAE . JE H AL A JE BRSO IE B da AL 5
BHHRBLRFE B#H Wk R %S 11 RERL 99 / 101



Any questions?
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Readings

@ Daganzo. Logistics System Analysis. Ch.2.
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